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Profile: example on a finite group
Cyclic permutation group G =C5; =< (123 45) >

— mnatural action on the five-pearl necklace
— induced action on subsets of pearls

Degree of an orbit: the size of all subsets in that orbit

Profile of G:  pi(n) = #{orbits of degree n}
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va(3) =2

pa(4) =1

pa(5) =1
(



Series of the profile

T+1z+4222 4223 + 1244+ 12°



Series of the profile

T+1z+4222 4223 + 1244+ 12°

G infinite —  Hg(z) =, ¢a(n)z"
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T+1z+4222 4223 + 1244+ 12°

G infinite —  Hg(z) =, ¢a(n)z"

Example

He (2) = 142422+ = =
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Hypothesis

G is oligomorphic: ¢ takes only finite values

Theorem
A countable first-order structure is Ng-categoric if and only if its
automorphism group is oligomorphic.

Structures with a high degree of symmetry.
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G is P-oligomorphic: g is bounded by a polynomial in n

Conjecture 1 - Cameron, 70’s
G P-oligomorphic = ¢g(n)~anf, keN



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits

® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits
® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)

® combinatorial description of the product



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits
® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)
® combinatorial description of the product

® graded according to the orbital degree:



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits

® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)

® combinatorial description of the product

® graded according to the orbital degree:
orby.orby = linear combination of orbits of degree d; + do



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits

® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)

® combinatorial description of the product

® graded according to the orbital degree:
orby.orby = linear combination of orbits of degree d; + do

e dim(Ay,) = pa(n), so Ha(z) =, dim(A,)z"



Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra Ag = €p,, A, on the orbits

® vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)

® combinatorial description of the product

® graded according to the orbital degree:
orby.orby = linear combination of orbits of degree d; + do

e dim(Ay,) = pa(n), so Ha(z) =, dim(A,)z"

Hilbert series of the graded algebra
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Conjecture of Macpherson

e}

Example. As.. ~ Q[X]

Conjecture 2 (stronger) - Macpherson, 85
G P-oligomorphic = A is finitely generated

Theorem (Thiéry, F. 2018)

The orbit algebra of a P-oligomorphic group is finitely generated,
and Cohen-Macaulay.
In particular, its profile is polynomial in the strong sense.
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Block systems

Block system

® Set partition of the domain into blocks

® such that G acts by permutation on the blocks

Example

4 1
Block systems of Cy -
Not a block system —
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The (closed) primitive P-oligomorphic groups

Macpherson:

G P-oligomorphic with no (non trivial) blocks = pg(n) =1 Vn

Theorem (Classification, Cameron)
Only 5 closed groups such that pg(n) =1 Vn
® Aut(Q) : automorphisms of the rational chain
® Rev(Q) : generated by Aut(Q) and one reflection
® Aut(Q/Z), preserving the circular order
® Rev(Q/Z) : generated by Aut(Q/Z) and a reflection

® S : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.
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An infinite example: G, ! G3

S3

T
AL

Wreath product
600 ! 63 ~ 620 X 63

Subset of “distribution” 2, 3, 2

— orbit under &2: 7z 73

Orbits of subsets of G, 1 G5
<> symmetric polynomials in x1, 2, x3

As.s;, ~ SymglX] = Q[X]®

Examples
Integer partitions; combinations; P-partitions...
(with optional length and/or height restrictions)
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Further examples

More generally, for H subgroup of &,,
e G=061H:
Ac ~ Q[Xq,... ,Xm]H, the algebra of invariants of H

Ag is finitely generated by Hilbert’s theorem.

A A
o VRVERVAY

Ac ~ Q[(X, )Oeorb(H) polynomial algebra generated by orb(H)

- 00000 -
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What block system to choose?

000000 = z:zx

AG &N

Two cases if G is P-oligomorphic :

As e — generators
¢c(n) grows at least like n''/ 1

e N<oo As. sy — N generators

Ll

@0 (n) grows at least like nV =1

Better have finite blocks and/or “small” infinite ones...
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any subset has a unique supremum (resp. infimum).

Not a lattice:

Meet and join in the lattice of set partitions

9 |
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Lattices of block systems

Lattice of set partitions — lattice on block systems

/\ (C2 X C2) 16
T =

Proposition (F.)
e {Systems with < oo blocks only} = sublattice with maximum
e  {Systems with co blocks only} = sublattice with minimum

Remark. If G is P-oligomorphic, both of them are actually finite !
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The nested block system

Idea
1. Take the mazimal system of finite blocks

2. Take the minimal system of infinite blocks of the action of G
on the maximal finite blocks — finitely many superblocks

THHTITITES

EO0000Q0QBABAA )0 « xema
Ee000000000 — )

(. [ ] [ ] [ ] [ ] ([ ] L] [ [ ] [ ] [ ] )

(. [ ] [ ] [ ] [ ] ([ ] [ [ [ [ ] [ ] e )

Action on the maximal finite blocks... that has no finite blocks.
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S - D
GCOOBEEDOEE -
Hy, H, Hy, H3, Hy, Hs --- Tower of G

Fact. The action by permutation of the blocks can be “desynchronized”
from the action within them —— left to study: block stabilizer

e H 164 —- H, H, H, H, H, H
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One superblock: examples

Soo

(BO00990EE -

HO) H17 H27 H3; H47 H5

Tower of G

Fact. The action by permutation of the blocks can be “desynchronized”
from the action within them —— left to study: block stabilizer

* H 6«

- H,H,H,H,H,H
.“HOXGOO”

— Hp,Id , Id , Id , Id , Id
® <“Hyx6x"H1Sx> — Hy,H, H, H, H, H
Hyv>H wlog

Notation: [Hy, H|
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Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions

e Formalizes the synchronization between two actions

e For instance, the actions on two different blocks

Remark. The possible synchronizations of a group with another
one are linked to its normal subgroups.
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The tower determines Stabg(blocks)

Fact. Stabg(blocks) = explicit subdirect product of the H;
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One superblock: classification

® The tower determines Stabg(blocks)

e Hence it determines G

® Computer exploration on finitely many blocks

— Observation: always some Hy, H, H, H, ... , H, H, !
Used the GAP database TransGrp 2.0.4 to browse transitive groups

— Proof in the infinite case: always some Hy, H, H, H ---

Classification
One superblock = G = [Hy, Hy]
.AG ~ Q[(Xo)oeorb(H)]Ho
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Normal subgroup of finite index K of G

® that fixes the kernel
® that stabilizes the superblocks
® that acts as wreath products on the superblocks
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General case: minimal subgroup of finite index

Normal subgroup of finite index K of G

® that fixes the kernel

® that stabilizes the superblocks

® that acts as wreath products on the superblocks
¢ in which Rev(...) are reduced down to Aut(...)
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Shape of the orbit algebra Ag

In K, totally independent superblocks (and kernel)
Consequence of the lack of finite index subgroups of G,
Aut(...) and wreath products

= direct product of the restrictions K%
= .AK = ®i AK(i)

K® = H)) & wreath product with finite blocks

= Ag ~ ® Q[ )OEorb H(l))}

free algebra finitely generated by the orbits of the H(")’s
(plus some 2-nilpotent elements brought by the kernel)

Fact: G acts by permutation on these generators
= Ag is the algebra of invariants of this finite action
(up to some nilpotents)

Hilbert’s theorem:
Ag finitely generated (and even Cohen-Macaulay)

Which ends the proof of the conjectures!
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Gy a finite permutation group, By a block system.
For each orbit of blocks, choose

1. One group of profile 1

¢ Has to be G, if the blocks are not singletons
¢ Can alternatively be Id; for at most one orbit of one block

2. One normal subgroup H of Hy = Gy p for any B in the orbit
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Classification of P-oligomorphic groups (F. 2019)
Gy a finite permutation group, By a block system.
For each orbit of blocks, choose

1. One group of profile 1

¢ Has to be G, if the blocks are not singletons
¢ Can alternatively be Id; for at most one orbit of one block

2. One normal subgroup H of Hy = Gy p for any B in the orbit
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Applications and perspectives

e First applications

Finite data structure — ground for algorithmics
Implementation of P-oligomorphic groups in Sage

e Short term:

count (transitive? kernel-free?) P-oligomorphic groups per
growth rate of the profile
release a Sage (and/or GAP?) package

e Explore higher growths
Bounded: classified before
Polynomial: classified now
Subexponential: some properties remain true, looks possible;
some very good recent results by Braunfeld and Bodor
(including a partial classification)
Exponential: wilder primitive groups appear...



Thank you for your attention !

Context
® (G permutation group of a countably infinite set F
® Profile ¢g: counts the orbits of finite subsets of
¢ Hypothesis: ¢g(n) bounded by a polynomial
e Conjecture (Cameron): ¢g(n) ~ an®

¢ Conjecture (Macpherson): finite generation of the orbit
algebra

Results
® Both conjectures hold !
e (lassification of P-oligomorphic permutation groups

® The orbit algebra is an algebra of invariants (up to some
2-nilpotent elements)
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Non trivial fact
Product well defined (and graded) on the space of orbits.

— Orbit algebra of a permutation group
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pa(n) = p(n)
An orbit of degree n «+— a partition of n
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The tower determines the group (1): “straight &..”

G contains a set of “straight” swaps of blocks

TLi T
., O e O
TLiTi Tl
1,677,571 o o o
e O e
B
B, B B
0«00« - +++ 50«0 | O
O«——>0«—0 s -220<—0 @]
@<——@—0 e - o>@—@ [ ]
B, By Bs Br_1 By Bri

Hence the actions on and within the blocks are independent.



The tower has shape Hy, H, H, H ---

Lemma to prove
G has tower Hy Hy Hy H3; = H{ = Hy

Proof.

An element s € G stabilizing the blocks <> a quadruple

geH — El(l,g,h,k), h,k e Hy.

Let o be an element of G that permutes “straightforwardly” the
first two blocks and fixes the other two.

Conjugation of x by c in G — y=1(g,1,h,k)

Then: 21y = (9,971, 1,1)

By arguing that the tower does not depend on the ordering of the
blocks, g~ and therefore g are in Ho.

In the infinite case, apply to each restriction to four consecutive
blocks of the fixator of the previous ones in G.
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