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Profile: example on a finite group
Cyclic permutation group G = C5 =< (1 2 3 4 5) >

→ natural action on the five-pearl necklace

→ induced action on subsets of pearls

Degree of an orbit: the size of all subsets in that orbit

Profile of G: ϕG(n) = #{orbits of degree n}

ϕG(0) = 1
ϕG(1) = 1
ϕG(2) = 2
ϕG(3) = 2
ϕG(4) = 1
ϕG(5) = 1
ϕG(n) = 0 si n > 5
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Series of the profile

1 + 1z + 2z2 + 2z3 + 1z4 + 1z5

G infinite → HG(z) =
∑

n ϕG(n)zn

Example
HS∞(z) = 1 + z + z2 + · · · = 1

1−z
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Oligomorphic groups in model theory

Hypothesis
G is oligomorphic : ϕG takes only finite values

Theorem
A countable first-order structure is ℵ0-categoric if and only if its
automorphism group is oligomorphic.

Structures with a high degree of symmetry.
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Stronger hypothesis
G is P -oligomorphic : ϕG is bounded by a polynomial in n

Conjecture 1 - Cameron, 70’s
G P -oligomorphic ⇒ ϕG(n) ∼ ank , k ∈ N
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Orbit algebra

Orbit algebra (Cameron, 80’s)
Structure of graded algebra AG =

⊕
nAn on the orbits

• vector space formally spanned by the orbits of G
(i.e. of basis indexed by the orbits)
• combinatorial description of the product
• graded according to the orbital degree:

orb1.orb2 = linear combination of orbits of degree d1 + d2

• dim(An) = ϕG(n)

, so HG(z) =
∑

n dim(An)zn

Hilbert series of the graded algebra
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Conjecture of Macpherson

Example. AS∞ ' Q[X]

Conjecture 2 (stronger) - Macpherson, 85
G P -oligomorphic ⇒ AG is finitely generated

Theorem (Thiéry, F. 2018)
The orbit algebra of a P -oligomorphic group is finitely generated,
and Cohen-Macaulay.
In particular, its profile is polynomial in the strong sense.
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3 2
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The (closed) primitive P -oligomorphic groups

Macpherson:
G P -oligomorphic with no (non trivial) blocks ⇒ ϕG(n) = 1 ∀n

S∞

Theorem (Classification, Cameron)
Only 5 closed groups such that ϕG(n) = 1 ∀n

• Aut(Q) : automorphisms of the rational chain
• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and a reflection
• S∞ : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.



The (closed) primitive P -oligomorphic groups
Macpherson:
G P -oligomorphic with no (non trivial) blocks ⇒ ϕG(n) = 1 ∀n

S∞

Theorem (Classification, Cameron)
Only 5 closed groups such that ϕG(n) = 1 ∀n

• Aut(Q) : automorphisms of the rational chain
• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and a reflection
• S∞ : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.



The (closed) primitive P -oligomorphic groups
Macpherson:
G P -oligomorphic with no (non trivial) blocks ⇒ ϕG(n) = 1 ∀n

S∞

Theorem (Classification, Cameron)
Only 5 closed groups such that ϕG(n) = 1 ∀n

• Aut(Q) : automorphisms of the rational chain
• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and a reflection
• S∞ : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.



The (closed) primitive P -oligomorphic groups
Macpherson:
G P -oligomorphic with no (non trivial) blocks ⇒ ϕG(n) = 1 ∀n

S∞

Theorem (Classification, Cameron)
Only 5 closed groups such that ϕG(n) = 1 ∀n
• Aut(Q) : automorphisms of the rational chain
• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and a reflection
• S∞ : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.



The (closed) primitive P -oligomorphic groups
Macpherson:
G P -oligomorphic with no (non trivial) blocks ⇒ ϕG(n) = 1 ∀n

S∞

Theorem (Classification, Cameron)
Only 5 closed groups such that ϕG(n) = 1 ∀n
• Aut(Q) : automorphisms of the rational chain
• Rev(Q) : generated by Aut(Q) and one reflection
• Aut(Q/Z), preserving the circular order
• Rev(Q/Z) : generated by Aut(Q/Z) and a reflection
• S∞ : the symmetric group

Well known, nice groups (called highly homogeneous).
In particular, their orbit algebra is finitely generated.



An infinite example: S∞ oS3

S3

S∞

S∞ S∞

Wreath product
S∞ oS3

' S3
∞ oS3

Subset of “distribution” 2, 3, 2
→ orbit under S3

∞: x2
1 x

3
2 x

2
3

Orbits of subsets of S∞ oS3
↔ symmetric polynomials in x1, x2, x3

AS∞oS3 ' Sym3[X] = Q[X]S3

Examples
Integer partitions; combinations; P -partitions...
(with optional length and/or height restrictions)
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→ finitely many superblocks
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. . .

← Kernel

Action on the maximal finite blocks... that has no finite blocks.
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One superblock: examples

S∞

. . .
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Fact. The action by permutation of the blocks can be “desynchronized”
from the action within them

−→ left to study: block stabilizer

• H o S∞ → H0, H0, H0, H0, H0, H0 · · ·
• “H0 ×S∞” → H0, Id1, Id1, Id1, Id1, Id1 · · ·
• < “H0 ×S∞”, H oS∞ >

→ H0, H0, H0, H0, H0, H0 · · ·
H0 . H w.l.o.g

Notation: [H0, H∞]
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Subdirect product and synchronization

How to handle synchronizations between blocks ?

Subdirect product of two groups, or actions
• Formalizes the synchronization between two actions
• For instance, the actions on two different blocks

Remark. The possible synchronizations of a group with another
one are linked to its normal subgroups.
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The tower determines StabG(blocks)

Fact. StabG(blocks) = explicit subdirect product of the Hi

· · ·

k l

Hk,l

H0,8

H0,4

H0,2

H0,1 = H0 H1

H2,2

H2 H3

H4,4

H4,2

H4 H5

H6,2

H6 H7,1 = H7

← Recursive
subdirect product

construction
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One superblock: classification

• The tower determines StabG(blocks)

• Hence it determines G

• Computer exploration on finitely many blocks

→ Observation: always some H0, H, H, H, . . . , H, Hs

!

Used the GAP database TransGrp 2.0.4 to browse transitive groups

→ Proof in the infinite case: always some H0, H, H, H · · ·

Classification
One superblock ⇒ G = [H0, H∞]

AG '

Q[(Xo)o∈ orb(H)]

H0
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General case: minimal subgroup of finite index

Normal subgroup of finite index K of G
• that fixes the kernel
• that stabilizes the superblocks
• that acts as wreath products on the superblocks
• in which Rev(...) are reduced down to Aut(...)

. . .

. . .

. . .

. . .

S2Id2
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Id o Rev(Q)Id oAut(Q)

Rev(Q)Aut(Q)
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Shape of the orbit algebra AG
• In K, totally independent superblocks (and kernel)

Consequence of the lack of finite index subgroups of S∞,
Aut(...) and wreath products

⇒ direct product of the restrictions K(i)

⇒ AK =
⊗

iAK(i)

• K(i) = H(i) oS∞ wreath product with finite blocks

⇒ AK '
⊗

i Q[(Xo)o∈orb(H(i))]
free algebra finitely generated by the orbits of the H(i)’s
(plus some 2-nilpotent elements brought by the kernel)

• Fact : G acts by permutation on these generators

⇒ AG is the algebra of invariants of this finite action
(up to some nilpotents)

• Hilbert’s theorem:
AG finitely generated (and even Cohen-Macaulay)

Which ends the proof of the conjectures !
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Applications and perspectives

• First applications
• Finite data structure → ground for algorithmics

• Implementation of P -oligomorphic groups in Sage

• Short term:
• count (transitive? kernel-free?) P -oligomorphic groups per

growth rate of the profile
• release a Sage (and/or GAP?) package

• Explore higher growths
• Bounded: classified before
• Polynomial: classified now
• Subexponential: some properties remain true, looks possible;

some very good recent results by Braunfeld and Bodor
(including a partial classification)
• Exponential: wilder primitive groups appear...
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Thank you for your attention !

Context
• G permutation group of a countably infinite set E
• Profile ϕG: counts the orbits of finite subsets of E
• Hypothesis: ϕG(n) bounded by a polynomial
• Conjecture (Cameron): ϕG(n) ∼ ank

• Conjecture (Macpherson): finite generation of the orbit
algebra

Results
• Both conjectures hold !
• Classification of P -oligomorphic permutation groups
• The orbit algebra is an algebra of invariants (up to some

2-nilpotent elements)
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ϕG(n) = p(n)
An orbit of degree n ←→ a partition of n
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The tower determines the group (1): “straight S∞”
G contains a set of “straight” swaps of blocks
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Hence the actions on and within the blocks are independent.
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The tower has shape H0, H, H, H · · ·

Lemma to prove
G has tower H0 H1 H2 H3 ⇒ H1 = H2

Proof.
An element s ∈ G stabilizing the blocks ↔ a quadruple
g ∈ H1 → ∃ (1, g, h, k), h, k ∈ H1.
Let σ be an element of G that permutes “straightforwardly” the
first two blocks and fixes the other two.
Conjugation of x by σ in G → y = (g, 1, h, k)
Then: x−1y = (g, g−1, 1, 1)
By arguing that the tower does not depend on the ordering of the
blocks, g−1 and therefore g are in H2.

In the infinite case, apply to each restriction to four consecutive
blocks of the fixator of the previous ones in G.



Direct product in the case of finite blocks "Speak, friend..."

Example 3
C3 ×S∞ acting on blocks of size 3

. . .

G′ = C3 acting on (non empty) subsets
Q[ x ]G′ ←→ Orbit algebra of C3 ×S∞ ?
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