Geometric triviality in differentially closed fields

Ronnie Nagloo

02 December 2020

This work is partially supported by NSF grants DMS-1700336 and DMS-1952694, and PSC-CUNY grant #63304-00 51.

Ronnie Nagloo

Geometric triviality in DCF

The aim of this talk is to:

- Describe the most important open problem in the study of the theory *DCF*₀.
- Recall the ω-categoricity conjecture of D. Lascar and the corresponding counterexample of J. Freitag and T. Scanlon
- Describe recent developments around work placing their counterexample into a larger context.
- Point out the main open questions.

1. Refresher on DCF_0 .

• The Trichotomy Theorem is arguably the deepest result in the study of *DCF*₀.

Zilber's Principle holds in *DCF*₀ (Hrushovski-Sokolovic, 1994)

Let Y be a strongly minimal set in $(\mathcal{U}, D) \models DCF_0$. Then exactly one of the following holds:

• (Field-like) *Y* is non-orthogonal to the algebraically closed subfield of constants $C_{\mathcal{U}} = \{y \in \mathcal{U} : D(y) = 0\}$; or

(Group-like) *Y* is non-orthogonal to a very special strongly minimal subgroup of an abelian variety not defined over $C_{\mathcal{U}}$

1. Refresher on DCF_0 .

• The Trichotomy Theorem is arguably the deepest result in the study of *DCF*₀.

Zilber's Principle holds in *DCF*₀ (Hrushovski-Sokolovic, 1994)

Let Y be a strongly minimal set in $(\mathcal{U}, D) \models DCF_0$. Then exactly one of the following holds:

- (Field-like) *Y* is non-orthogonal to the algebraically closed subfield of constants $C_{\mathcal{U}} = \{y \in \mathcal{U} : D(y) = 0\}$; or
- **(Group-like)** Y is non-orthogonal to a very special strongly minimal subgroup of an abelian variety not defined over $C_{\mathcal{U}}$; or
- Y is (geometrically) trivial.

1. Refresher on DCF_0 .

• The Trichotomy Theorem is arguably the deepest result in the study of *DCF*₀.

Zilber's Principle holds in *DCF*₀ (Hrushovski-Sokolovic, 1994)

Let Y be a strongly minimal set in $(\mathcal{U}, D) \models DCF_0$. Then exactly one of the following holds:

- (Field-like) *Y* is non-orthogonal to the algebraically closed subfield of constants $C_{\mathcal{U}} = \{y \in \mathcal{U} : D(y) = 0\}$; or
- **(Group-like)** Y is non-orthogonal to a very special strongly minimal subgroup of an abelian variety not defined over $C_{\mathcal{U}}$; or

• Y is (geometrically) trivial.

• Except for (3), this gives a full classification of strongly minimal sets in *DCF*₀.

- We work in the language $L_D = (0, 1, +, \times, D)$ of differential rings.
- *DF*₀ denotes the theory of differential fields of characteristic zero:

A differential field (K, D) is a field K equipped with a derivation $D: K \to K$, i.e. an additive group homomorphism satisfying the Leibniz rule

$$D(x + y) = D(x) + D(y).$$

$$D(xy) = xD(y) + yD(x).$$

 $\left(\left(t \right), \frac{d}{dt} \right)$

- We work in the language $L_D = (0, 1, +, \times, D)$ of differential rings.
- *DF*₀ denotes the theory of differential fields of characteristic zero:

A differential field (K, D) is a field K equipped with a derivation $D: K \to K$, i.e. an additive group homomorphism satisfying the Leibniz rule

$$D(x + y) = D(x) + D(y).$$

$$D(xy) = xD(y) + yD(x).$$

- This theory can be quite wild: (Q, 0, 1, +, ×, D = 0) is an example of a differential field and so one gets non-computable definable sets.
- We look at existentially closed models.

• For each $m \in \mathbb{N}_{>0}$, associated with a differential field (*K*, *D*), is the ring of differential polynomials in *m* differential variables,

$$\mathcal{K}\{\overline{X}\} = \mathcal{K}[\overline{X}, \overline{X}', \dots, \overline{X}^{(n)}, \dots].$$

$$\overline{\chi} = (\chi_{1, \dots, \chi_{m}}) \qquad \overline{\chi} \stackrel{(n)}{=} (\chi_{1, \dots, \chi_{m}}^{(n)})$$

$$\int_{0}^{n} (\chi) = \chi^{(n)}$$

 For each *m* ∈ ℕ_{>0}, associated with a differential field (*K*, *D*), is the ring of differential polynomials in *m* differential variables,

$$K{\overline{X}} = K[\overline{X}, \overline{X}', \dots, \overline{X}^{(n)}, \dots].$$

- If *f* ∈ *K*{*X*} is a differential polynomial, then the order of *f*, denoted ord(*f*), is the largest *n* such that for some *i*, X_i⁽ⁿ⁾ occurs in *f*.
- **Example:** $f(X) = (X')^2 4X^3 tX$ is an example of a differential polynomial in $\mathbb{C}(t)\{X\}$ and ord(f) = 1.

For each *m* ∈ ℕ_{>0}, associated with a differential field (*K*, *D*), is the ring of differential polynomials in *m* differential variables,

$$K{\overline{X}} = K[\overline{X}, \overline{X}', \dots, \overline{X}^{(n)}, \dots].$$

- If *f* ∈ *K*{*X*} is a differential polynomial, then the order of *f*, denoted ord(*f*), is the largest *n* such that for some *i*, X_i⁽ⁿ⁾ occurs in *f*.
- **Example:** $f(X) = (X')^2 4X^3 tX$ is an example of a differential polynomial in $\mathbb{C}(t)\{X\}$ and ord(f) = 1.
- The analogue of algebraically closed fields in the differential context is defined as follows

Definition (Blum Axioms, 1968)

A differential field (K, D) is said to be differentially closed if for every $f, g \in K\{X\}$ such that ord(f) > ord(g), there is $a \in K$ such that f(a) = 0 and $g(a) \neq 0$.

• *DCF*₀ is the theory obtained by adding to *DF*₀, the *L*_{*D*}-sentences describing that a differential field is differentially closed.

It is a very tame theory.

Theorem (Blum, 1968)

The theory DCF₀ is complete & ω -stable; and has QE & EI.

• *DCF*₀ is the theory obtained by adding to *DF*₀, the *L*_{*D*}-sentences describing that a differential field is differentially closed.

It is a very tame theory.

Theorem (Blum, 1968)

The theory DCF₀ is complete & ω -stable; and has QE & EI.

• We fix throughout $(\mathcal{U}, D) \models DCF_0$ a saturated model.

Definition

A definable set $Y \subset U^n$ is strongly minimal if Y is infinite and for every definable $X \subset Y$ either X or $Y \setminus X$ is finite.

• *DCF*₀ is the theory obtained by adding to *DF*₀, the *L*_{*D*}-sentences describing that a differential field is differentially closed.

It is a very tame theory.

Theorem (Blum, 1968)

The theory DCF₀ is complete & ω -stable; and has QE & EI.

• We fix throughout $(\mathcal{U}, D) \models DCF_0$ a saturated model.

Definition

A definable set $Y \subset U^n$ is strongly minimal if Y is infinite and for every definable $X \subset Y$ either X or $Y \setminus X$ is finite.

• In *DCF*₀ strongly minimal sets determine, in a precise manner, the structure of all definable sets of finite Morley rank.

acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by A.

 $= \mathbb{Q}(a, a', a'', \ldots : a \in A)^{alg}.$

acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by *A*.

$$= \mathbb{Q}\left(\pmb{a}, \pmb{a}', \pmb{a}'', \ldots : \pmb{a} \in \pmb{A}
ight)^{\pmb{alg}}.$$

Fact

If Y is a strongly minimal set, then (Y, acl_Y) forms a pregeometry.

acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by *A*.

$$= \mathbb{Q}\left(\pmb{a}, \pmb{a}', \pmb{a}'', \ldots : \pmb{a} \in \pmb{A}
ight)^{\pmb{alg}}.$$

Fact

If Y is a strongly minimal set, then (Y, acl_Y) forms a pregeometry.

General examples

- ACF_p : acl = field theoretic algebraic closure.
- Vector fields over a fixed field K: acl = K-span.

acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by *A*.

$$= \mathbb{Q}\left(\textit{a},\textit{a}',\textit{a}'',\ldots:\textit{a}\in\textit{A}
ight)^{\textit{alg}}.$$

Fact

If Y is a strongly minimal set, then (Y, acl_Y) forms a pregeometry.

General examples

- ACF_p : acl = field theoretic algebraic closure.
- Vector fields over a fixed field K: acl = K-span.
- The Trichotomy classifies <u>non-trivial</u> strongly minimal sets as essentially the above.

Definition

Let Y be a strongly minimal set. (Y, acl_Y) is (geometrically) trivial if for any $A \subset \mathcal{P}(Y)$ we have that

$$\operatorname{acl}_Y(A) = \bigcup_{a \in A} \operatorname{acl}_Y(a).$$

Definition

Let Y be a strongly minimal set. (Y, acl_Y) is (geometrically) trivial if for any $A \subset \mathcal{P}(Y)$ we have that

$$acl_Y(A) = \bigcup_{a \in A} acl_Y(a).$$

Trivial strongly minimal sets have at most "binary structures", indeed
 a ∈ acl_Y(A) ⇒ a ∈ acl_Y(b) for some b ∈ A

Definition

Let Y be a strongly minimal set. (Y, acl_Y) is (geometrically) trivial if for any $A \subset \mathcal{P}(Y)$ we have that

$$acl_Y(A) = \bigcup_{a \in A} acl_Y(a).$$

- Trivial strongly minimal sets have at most "binary structures", indeed
 a ∈ acl_Y(A) ⇒ a ∈ acl_Y(b) for some b ∈ A
- Open problem: Can trivial strongly minimal sets be classified?

Definition

Let Y be a strongly minimal set. (Y, acl_Y) is (geometrically) trivial if for any $A \subset \mathcal{P}(Y)$ we have that

$$acl_Y(A) = \bigcup_{a \in A} acl_Y(a).$$

- Trivial strongly minimal sets have at most "binary structures", indeed
 a ∈ *acl_Y*(*A*) ⇒ *a* ∈ *acl_Y*(*b*) for some *b* ∈ *A*
- Open problem: Can trivial strongly minimal sets be classified?
 - If there were a strong structure theory, some of the strategy laid out by Hrushovki for certain diophantine problems might be possible.
 - Work on this problem has also lead to proof of important theorems in number theory/functional transcendence in a different direction.

- Unfortunately, there is no general strategy to tackle the above problem.
- Can there even be a differential equation whose solution set has at most a "rich binary structure"?

• Unfortunately, there is no general strategy to tackle the above problem.

mivial

• Can there even be a differential equation whose solution set has at most a "rich binary structure"?

Definition

Let *Y* be a strongly minimal set. We say that (Y, acl_Y) is ω -categorical if for any $y \in Y$ the set $acl_Y(y)$ is finite.

• Unfortunately, there is no general strategy to tackle the above problem.

bouid

• Can there even be a differential equation whose solution set has at most a "rich binary structure"?

Definition

Let *Y* be a strongly minimal set. We say that (Y, acl_Y) is ω -categorical if for any $y \in Y$ the set $acl_Y(y)$ is finite.

Old Conjecture (Lascar, 1976)

In DCF₀, geometric triviality $\implies \omega$ -categoricity.

• Was there any evidence?

- Unfortunately, there is no general strategy to tackle the above problem.
- Can there even be a differential equation whose solution set has at most a "rich binary structure"?

Definition

Let *Y* be a strongly minimal set. We say that (Y, acl_Y) is ω -categorical if for any $y \in Y$ the set $acl_Y(y)$ is finite.

Old Conjecture (Lascar, 1976)

In DCF₀, geometric triviality $\implies \omega$ -categoricity.

• Was there any evidence?

Theorem (Hrushovki, 1995)

The order 1 trivial strongly minimal sets are ω -categorical.

Conjecture (Sadly NOT True)

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or
- **(a)** Y has no or little structure, i.e, is ω -categorical.

Conjecture (Sadly NOT True)

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or
- **(a)** Y has no or little structure, i.e, is ω -categorical.
- We now know from the work of Freitag and Scanlon that the conjecture is false.
- However, it is still possible that the conjecture is true for order 2 definable sets.

Indeed, all known examples of order 2 strongly minimal sets in DCF_0 are ω -categorical.

3. Freitag-Scanlon counterexample

• One would like to find a differential equation for which the solutions (a meromorphic function) satisfy rich binary algebraic relations!

3. Freitag-Scanlon counterexample

• One would like to find a differential equation for which the solutions (a meromorphic function) satisfy rich binary algebraic relations!

Riemann Mapping Theorem

Let $D \subset \mathbb{C}$ be a simply connected domain that is not \mathbb{C} . Then there is a biholomorphic mapping $f : D \to \mathbb{H}$, where $\mathbb{H} = \{z \in \mathbb{C} \mid Im(z) > 0\}$ is the complex upper half plane.

3. Freitag-Scanlon counterexample

• One would like to find a differential equation for which the solutions (a meromorphic function) satisfy rich binary algebraic relations!

Riemann Mapping Theorem

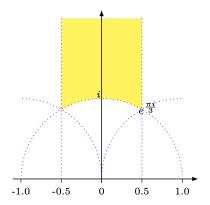
Let $D \subset \mathbb{C}$ be a simply connected domain that is not \mathbb{C} . Then there is a biholomorphic mapping $f : D \to \mathbb{H}$, where $\mathbb{H} = \{z \in \mathbb{C} \mid Im(z) > 0\}$ is the complex upper half plane.

Recall that we have SL₂(ℝ) = {A ∈ Mat₂(ℝ) : det(A) = 1} and its action on ℍ by linear fractional transformation

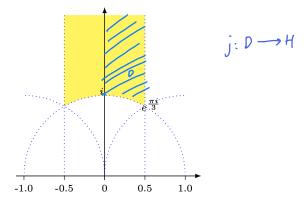
$$egin{pmatrix} {m a} & {m b} \\ {m c} & {m d} \end{pmatrix} \cdot au = rac{{m a} au + {m b}}{{m c} au + {m d}} \in \mathbb{H}$$

where $A \in SL_2(\mathbb{R})$ and $\tau \in \mathbb{H}$.

 The Freitag-Scanlon example focuses on the subgroup SL₂(ℤ). In this case one has that the fundamental domain of action is



 The Freitag-Scanlon example focuses on the subgroup SL₂(ℤ). In this case one has that the fundamental domain of action is



• We want to apply the RMT to the fundamental half domain.

$\begin{array}{ccc} \mathsf{RMT} & \Longrightarrow & \exists & j: D \to \mathbb{H} \\ & \downarrow & \end{array}$

$\begin{array}{rcl} \mathsf{RMT} & \Longrightarrow & \exists & j : D \to \mathbb{H} \\ & & \downarrow \texttt{ext_{erd}} \\ & \Longrightarrow & j : \mathit{SL}_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C} \\ & \downarrow \end{array}$

$\begin{array}{rcl} \mathsf{RMT} & \Longrightarrow & \exists & j: D \to \mathbb{H} \\ & \downarrow & \\ & \Longrightarrow & j: SL_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C} \\ & \downarrow & \\ & \Longrightarrow & j: \mathbb{H} \to \mathbb{C} \text{ is } SL_2(\mathbb{Z}) \text{-automorphic,} \\ & & \text{ so } j(g \cdot t) = j(t) \text{ where } g \in SL_2(\mathbb{Z}) \end{array}$

$$\begin{array}{rcl} \mathsf{RMT} & \Longrightarrow & \exists & j : D \to \mathbb{H} \\ & \downarrow & \\ & \Longrightarrow & j : SL_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C} \\ & \downarrow & \\ & \Longrightarrow & j : \mathbb{H} \to \mathbb{C} \text{ is } SL_2(\mathbb{Z}) \text{-automorphic,} \\ & & \text{ so } j(g \cdot t) = j(t) \text{ where } g \in SL_2(\mathbb{Z}) \end{array}$$

• The function *j* is called the modular *j*-function.

It satisfies the 3rd order algebraic differential equation

$$\left(\frac{y''}{y'}\right)' - \frac{1}{2} \left(\frac{y''}{y'}\right)^2 + \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2} \cdot (y')^2 = 0 \qquad (\star_j)$$

Ronnie Nagloo

$$\begin{array}{rcl} \mathsf{RMT} & \Longrightarrow & \exists & j : D \to \mathbb{H} \\ & \downarrow & \\ & \Longrightarrow & j : SL_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C} \\ & \downarrow & \\ & \Longrightarrow & j : \mathbb{H} \to \mathbb{C} \text{ is } SL_2(\mathbb{Z}) \text{-automorphic,} \\ & & \text{ so } j(g \cdot t) = j(t) \text{ where } g \in SL_2(\mathbb{Z}) \end{array}$$

• The function *j* is called the modular *j*-function.

It satisfies the 3rd order algebraic differential equation

$$S_{1}(y) = (\frac{y''}{y'})' - \frac{1}{2} \left(\frac{y''}{y'}\right)^{2} + \frac{y^{2} - 1968y + 2654208}{2y^{2}(y - 1728)^{2}} \cdot (y')^{2} = 0 \quad (\star_{j})$$

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

• They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

- They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.
- Other ingredients
 - Any solution can be taken to be of the form $j(g \cdot t)$ for $g \in SL_2(\mathbb{R})$.

2 For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

- They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.
- Other ingredients
 - **(1)** Any solution can be taken to be of the form $j(g \cdot t)$ for $g \in SL_2(\mathbb{R})$.
 - **2** For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

$$\Phi_N(j(t),j(N\cdot t))=0.$$

• For a while this seemed to have shut the door on the possible classification of trivial strongly minimal sets.

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

- They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.
- Other ingredients
 - **(1)** Any solution can be taken to be of the form $j(g \cdot t)$ for $g \in SL_2(\mathbb{R})$.
 - **2** For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

 $\Phi_N(j(t),j(N\cdot t))=0.$

- For a while this seemed to have shut the door on the possible classification of trivial strongly minimal sets.
- **Main question:** Is there a way to explain the existence of the modular polynomials?

3. The main results: the general context

- SL2(Z) simply connected Finite - j-hunchin

• The function j_{Γ} satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2}\sum_{i=1}^{r} \frac{1-\alpha_i^2}{(y-a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y-a_i} \cdot (y')^2 = 0 \qquad (\star_{j_{\Gamma}})$$

The function *j*_Γ satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2}\sum_{i=1}^{r} \frac{1-{\alpha_i}^2}{(y-a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y-a_i} \cdot (y')^2 = 0$$
 (*_{jr})

We denote by X_Γ the set defined in U by equation (*_{j_Γ}).
 As before, any solution in X_Γ can be taken to be of the form j_Γ(g · t).

● The function *j*_Γ satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2}\sum_{i=1}^{r} \frac{1-\alpha_i^2}{(y-a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y-a_i} \cdot (y')^2 = 0 \quad (\star_{j_{\Gamma}})$$

• We denote by X_{Γ} the set defined in \mathcal{U} by equation $(\star_{j_{\Gamma}})$.

As before, any solution in X_{Γ} can be taken to be of the form $j_{\Gamma}(g \cdot t)$.

Theorem (Casale-Freitag-N, 2020)

The definable set X_{Γ} is strongly minimal and geometrically trivial

The function j_r satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2}\sum_{i=1}^{r} \frac{1-\alpha_i^2}{(y-a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y-a_i} \cdot (y')^2 = 0 \quad (\star_{j_{\Gamma}})$$

• We denote by X_{Γ} the set defined in \mathcal{U} by equation $(\star_{j_{\Gamma}})$.

As before, any solution in X_{Γ} can be taken to be of the form $j_{\Gamma}(g \cdot t)$.

Theorem (Casale-Freitag-N, 2020)

The definable set X_{Γ} is strongly minimal and geometrically trivial

- This amounts to a proof of an old conjecture of Painlevé (1895) about the irreducibility of equation (*_{j_Γ}).
- Our proof is general and only depends on Γ (not on *j*_Γ) and in particular gives a new proof for SL₂(Z).

The function j_r satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2}\sum_{i=1}^{r}\frac{1-\alpha_{i}^{2}}{(y-a_{i})^{2}} + \sum_{i=1}^{r}\frac{A_{i}}{y-a_{i}}\cdot(y')^{2} = 0 \quad (\star_{j_{\Gamma}})$$

• We denote by X_{Γ} the set defined in \mathcal{U} by equation $(\star_{j_{\Gamma}})$.

As before, any solution in X_{Γ} can be taken to be of the form $j_{\Gamma}(g \cdot t)$.

Theorem (Casale-Freitag-N, 2020)

The definable set X_{Γ} is strongly minimal and geometrically trivial

- This amounts to a proof of an old conjecture of Painlevé (1895) about the irreducibility of equation (*_{j_Γ}).
- Our proof is general and only depends on Γ (not on *j*_Γ) and in particular gives a new proof for SL₂(Z).
- What about ω-categoricity?

• Arithmeticity: An important dividing line in group theory.

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$.

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$. Then $\Gamma = \rho^{-1}(G)$ is a Fuchsian group.

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$. Then $\Gamma = \rho^{-1}(G)$ is a Fuchsian group.

Definition

All subgroups of $SL_2(\mathbb{R})$ obtained this way and their subgroups of finite index are called arithmetic Fuchsian groups.

 Arithmetic Fuchsian groups play an important role in number theory and the quotients Γ \ III are known as Shimura Curves of genus 0.

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$. Then $\Gamma = \rho^{-1}(G)$ is a Fuchsian group.

Definition

All subgroups of $SL_2(\mathbb{R})$ obtained this way and their subgroups of finite index are called arithmetic Fuchsian groups.

 Arithmetic Fuchsian groups play an important role in number theory and the quotients Γ \ III are known as Shimura Curves of genus 0.

Theorem (Casale-Freitag-N, 2020)

The set X_{Γ} is not ω -categorical

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$. Then $\Gamma = \rho^{-1}(G)$ is a Fuchsian group.

Definition

All subgroups of $SL_2(\mathbb{R})$ obtained this way and their subgroups of finite index are called arithmetic Fuchsian groups.

 Arithmetic Fuchsian groups play an important role in number theory and the quotients Γ \ III are known as Shimura Curves of genus 0.

Theorem (Casale-Freitag-N, 2020)

The set X_{Γ} is not ω -categorical if and only if Γ is arithmetic.

Arithmetic
$$\Leftrightarrow$$
 rich binory structure??
Then (Poincare): If $j_1 \ k \ j_2$ are automorphic for Γ
Then $j_1 \ k \ j_2$ are dependent over C
Fact: IF $\Gamma_1 \subset \Gamma$ is of finite index then \hat{J}_{Γ} is also automorphic
for Γ_1 .
 \Rightarrow IF J geSl2(R) set $\Gamma_2 = \Gamma n \ g \ \Gamma_2^{-1}$ is fin index in both
 $\Gamma' \ k \ g \ \Gamma_2^{-1}$
 \Rightarrow the uniformizers $j_{\Gamma}Ct$ $k \ j_{\Gamma}C^{-1}t$
 $are \ alg \ dependent \ over \ C$
 $(omm(\Gamma): [geSl_2(R): \Gamma_2 \ fin index in \ \Gamma \ k \ g \ \Gamma_2^{-1}t]$
Then (Margula): Γ' is arithmetic iff Γ' has in finite index
in Comm(Γ)

Major Challenge

In DCF_0 , does every non- ω -categorical strongly minimal set "arise" from an arithmetic Fuchsian group?

Major Challenge

In DCF_0 , does every non- ω -categorical strongly minimal set "arise" from an arithmetic Fuchsian group?

In other words, is the following restatement of Lascar's Conjecture true?

Conjecture

Let Y be a strongly minimal set in $(\mathcal{U}, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or

Major Challenge

In DCF_0 , does every non- ω -categorical strongly minimal set "arise" from an arithmetic Fuchsian group?

In other words, is the following restatement of Lascar's Conjecture true?

Conjecture

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or
- Y arise from an arithmetic Fuchsian group; or
- Y has no or little structure, i.e, is ω -categorical.

Thank you very much for your attention.

