O-minimality of real exponentiation

4 November 2020

1. Preliminaries

Let \mathcal{L} be a language, T be an \mathcal{L} -theory.

Definition. *T* is **model-complete** if for every $M, N \models T$, if $M \subseteq N$, then $M \leq N$. **Fact.** *T* is model-complete if and only if every \mathcal{L} -formula is equivalent to a universal \mathcal{L} -formula. In particular, if *T* has quantifier elimination, then it is model complete.

Examples.

- The theory ACF of algebraically closed fields in the language of rings $\mathcal{L}_{ring} \coloneqq \{0,1,+,\cdot\}$ is model-complete (it has quantifier elimination). Hence the embeddings $\overline{\mathbb{Q}}^{alg} \subseteq \mathbb{C} \subseteq \overline{\mathbb{C}(t)}^{alg}$ are all elementary.
- The theory RCF of real closed fields in the language L_{ring} is also model-complete. However, it only eliminates quantifiers after moving to L_{oring} := L_{ring} ∪ {≤} and adding the axiom ∀x, y. x ≤ y ↔ ∃z. x + z · z = y.
 Exercise: verify that (1) RCF does *not* eliminate quantifiers in L_{ring}, (2) every L_{ring}-formula is equivalent to an existential formula, and (3) that (2) implies model-completeness.

Addendum: in the language *of ordered* rings, RCF can be axiomatised by saying that the field is ordered, plus the intermediate value property for polynomials (if p(a)p(b) < 0, then there is *c* between *a* and *b* such that p(c) = 0). The i.v.p. can be replaced with "every polynomial of odd degree has a zero, and every positive element has a square root". **Exercise:** how would you axiomatise RCF is \mathcal{L}_{ring} only?

Now assume that $\mathcal{L} \supseteq \{<\}$. **Definition.**

An *L*-structure *M* is o-minimal if *M* ⊨< is a total order and every definable subset of *M* is a finite union of points and intervals. In other words, if every definable subset of *M* is quantifier-free definable (with parameters) using < only.

• An f_{-} theory is <u>a minimal</u> if every $M \vdash T$ is a minimal

Remarks.

• Most of the times, o-minimality is also taken to include "< is a dense linear

- definable subset of M is quantifier-free definable (with parameters) using < only.
- All \mathcal{L} -theory is **U-infinited** if every $M \vdash I$ is U-infinited.

Remarks.

- Most of the times, o-minimality is also taken to include "< is a dense linear order without endpoints".
- O-minimality is a first order property (Pillay-Steinhorn '88): if M is o-minimal, and $N \equiv M$, then N is o-minimal (in other words, "o-minimality" coincides with "strong o-minimality").
- The type tp(a/M) of some $a \in N \supseteq M$, where M is o-minimal, is completely determined by the cut of a over M: $cut_M(a) \coloneqq \{b \in M \mid b < a\}$.

Examples.

- The theory of dense linear orders with or without endpoints. This follows immediately from quantifier elimination.
- (ω, <), again by quantifier elimination but no proper expansion is ominimal (Pillay-Steinhorn '87).
- The theory of real closed fields: it has QE in L = {<, 0,1, +,·}, so every formula is equivalent to a boolean combination of p(x) > 0 or q(x) = 0, which clearly define finite unions of intervals and points.
- What we are going to see today.

1. Restricted analytic functions...

Definitions. Let

- $\mathbb{R}{X_1, ..., X_n}$, for $n \ge 0$, be the ring of functions $[-1,1]^n \to \mathbb{R}$ that are *analytic* on some open $U \supseteq [-1,1]^n$ (where U may depend on the function).
- $\mathcal{L}_{an} \coloneqq \mathcal{L}_{oring} \cup {\{\tilde{f}\}}_{f \in \mathbb{R}{X_1, ..., X_n}, n \in \mathbb{N}}$, where \tilde{f} are function symbols with the obvious arities.
- \mathbb{R}_{an} be the structure obtained by interpreting \mathcal{L}_{oring} as usual and each \tilde{f} as the function f.

Examples: we add symbols $\widetilde{\cos}$, $\widetilde{\sin}$, $\widetilde{\exp}$ for the functions $\cos_{\lfloor -1,1 \rfloor}$, $\sin_{\lfloor -1,1 \rfloor}$, $\exp_{\lfloor -1,1 \rfloor}$, as well as for every constant function.

• T_{an} be the complete \mathcal{L}_{an} -theory of \mathbb{R}_{an} .

Theorems.

- Gabrielov '68: *T*_{an} is model-complete and o-minimal (noted by van den Dries '86).
- Denef-van den Dries '88: T_{an} eliminates quantifiers after adding a binary $D(x, y) = \frac{x}{y}$ for $|x| \le |y| \le 1$ and $y \ne 0$, D(x, y) = 0 otherwise. Moreover, they describe a natural complete axiomatisation.
- Global cos and sin, otherwise it would not be o-minimal (the set cos(x) = 0 is not a finite union of points and intervals).
- Clabel and because T is also well as the bounded summed of relationship to the second seco

they describe a natural complete axiomatisation.

Corollaries. *T*_{an} cannot define:

- Global cos and sin, otherwise it would not be o-minimal (the set cos(x) = 0 is not a finite union of points and intervals).
- Global exp, because T_{an} is also **polynomially bounded**: every definable unary function is eventually dominated by a polynomial (i.e., for every definable f there is some n such that $|f(x)| \le x^n$ for $x \to +\infty$).
- In fact, every definable function $\mathbb{R} \to \mathbb{R}$ coincides with an \mathcal{L}_{an}^{D} -term (to be defined later) for $x \gg 1$.

2. ...and real exponentiation

Definitions.

- $\mathcal{L}_{exp} \coloneqq \mathcal{L}_{oring} \cup \{exp\}$, where exp is a unary function symbol.
- \mathbb{R}_{exp} be the structure obtained by interpreting exp as real exponentiation.
- T_{\exp} be the complete \mathcal{L}_{\exp} -theory of \mathbb{R}_{\exp} .
- $\mathcal{L}_{an,exp} \coloneqq \mathcal{L}_{an} \cup \mathcal{L}_{exp}$.
- $\mathbb{R}_{an,exp}$ be the common expansion of \mathbb{R}_{an} and \mathbb{R}_{exp} .
- $T_{\text{an,exp}}$ be the complete $\mathcal{L}_{\text{an,exp}}$ -theory of $\mathbb{R}_{\text{an,exp}}$.

Theorems.

- Wilkie '94 (but more like '91-92): T_{exp} is model-complete and o-minimal.
- Van den Dries-Miller '94: $T_{an,exp}$ is model-complete and o-minimal.
- Van den Dries-Macintyre-Marker '94 (after Ressayre '93): $T_{an,exp}$ eliminate quantifiers after adding a unary log. Moreover, they describe a universal axiomatisation in that language.

3. The axiomatisation

Recall that $\mathbb{R}{X_1, ..., X_n}$ is a ring. But you can also *compose* functions, provided the image of the inner function falls within $[-1,1]^n$.

More precisely, let's keep in mind that for any $f \in \mathbb{R}\{X_1, ..., X_n\}$, we can compose f in at least the following two ways:

- (i) Let $g_1, \ldots, g_n \in \mathbb{R}[X_1, \ldots, X_m]$ be such that $g_i([-1,1]^m) \subseteq [-1,1]$ and $g_i(0) = 0$ for all *i*. Then $f \circ (g_1, \ldots, g_n)_{\upharpoonright [-1,1]^m} \in \mathbb{R}\{X_1, \ldots, X_m\}$.
- (ii) Let $\bar{a} \in [-1,1]^n$ and $\varepsilon \in \mathbb{R}^{>0}$ such that $\bar{a} + \varepsilon [-1,1]^n \subseteq [-1,1]^n$. Then $f(\bar{a} + \varepsilon \bar{X}) \in \mathbb{R}\{X_1, \dots, X_n\}.$

Theorem (van den Dries-Macintyre-Marker '94, plus Ressayre '93). $T_{an,exp}$ is axiomatised by the following schemes.

- (a) The axioms of ordered fields.
- (c) (AC1-2) The map sending f to the interpretation of \tilde{f} is a ring homomorphism mapping X_i to the function x_i and (AC3-4) it preserves the partial

axiomatised by the following schemes.

- (a) The axioms of ordered fields.
- (b) Each positive element has an *n*-th root for all $n \ge 2$ [actually redundant here see below].
- (c) (AC1-2) The map sending f to the interpretation of \tilde{f} is a ring homomorphism mapping X_i to the function x_i , and (AC3-4) it preserves the partial compositions as in (i)-(ii).
- (d) (E1-3) The map exp is an ordered group isomorphism from the *additive group* to the positive part of the *multiplicative group*, i.e. $\exp(x + y) = \exp(x) \exp(y)$, exp is injective and surjective over the positive elements.
- (e) (E4) $x > n^2 \rightarrow \exp(x) > x^n$ for all $n \in \mathbb{N}$ and all x.
- (f) (E5) $-1 \le x \le 1 \rightarrow \exp(x) = \widetilde{\exp}(x)$.

Moreover, the above axiomatisation is *universal* after adding log to the language.

Addendum. Note that (E1-3) and (E5) already determine exp completely on \mathbb{R} : for every $r \in \mathbb{R}$, there is $n \in \mathbb{N}$ such that $\frac{r}{n} \in [-1,1]$, hence $\exp(r) = \exp\left(\frac{r}{n}\right)^n$. However, you need more info when you go to a non-standard model. One can construct explicit models of (E1-3)+(E5) where, for instance, $\exp(x) = x$ has cofinally many solutions.

Remark. (b) is redundant because of $x^{\frac{1}{n}} = \exp\left(\frac{1}{n}\log(x)\right)$. I report it here for completeness: (a)-(c) is an axiomasition of T_{an} .

We shall now walk through the key steps in van den Dries-Macintyre-Marker '94 towards the proof of the above theorem.

We shall use, without proof, that the axiomatisation (a)-(c) of T_{an} is o-minimal, model-complete, and has QE + universal axiomatisation after adding the definable function D to the language, where $D(x, y) = \frac{x}{y}$ for $|x| \le |y| \le 1$ and $y \ne 0$, D(x, y) = 0 otherwise (Denef-van den Dries '88).

4. The Archimedean valuation

Definitions.

- Let *K* be a field, *G* be an ordered group. A valuation is a map $v: K^{\times} \to G$ such that
 - a. v(xy) = v(x) + v(y)
 - b. $v(x + y) \ge \min\{v(x), v(y)\}$ (ultrametric inequality).

One may also define $v(0) = \infty = +\infty$ to patch up a value at 0.

Exercise: check that the balls $B_a(g) \coloneqq \{x \in K \mid v(x-a) > g\}$ form a basis for a topology on K under which + and \cdot are continuous. Observe that two balls can only be disjoint or contained in one another.

$$\begin{array}{ll} x \asymp y & x \leq y \leq x \\ K \to K^{\times}/{\asymp} \end{array}$$

- for a topology on K under which + and \cdot are continuous. Observe that two balls can only be disjoint or contained in one another.
- Suppose K is ordered. For x, y ∈ K[^], let x ≤ y if |x| ≤ n|y| for some n ∈ N, and x ≍ y if x ≤ y ≤ x. The quotient (K[×]/≍, ≥) is an ordered group (note the flipped order) and the map K → K[×]/≍ is called Archimedean valuation.
 Exercise: verify that it is a valuation.
- From now on, denote by v the Archimedean valuation.

Addendum. The field \mathbb{R} has trivial Archimedean valuation: the quotient $\mathbb{R}^{\times}/\cong$ consists of a single point. The ordered field $\mathbb{R}(t)$, where by convention 0 < t < r for all $r \in \mathcal{R}^{>0}$, has Archimedean value group \mathbb{Z} : each \cong -equivalence class is represented by t^n for some $n \in \mathbb{Z}$, and if you let $v(t^n) = n$; note for instance that $v(t^nt^m) = n + m$. **Exercise:** verify explicitly that for every $f \in \mathbb{R}(t)$ there is a unique $n_f \in \mathbb{Z}$ such that $f \cong t^{n_f}$; define $v(f) = n_f$ and verify that the map $v: \mathbb{R}(t) \to \mathbb{Z}$ is a valuation.

Remark. A valuation is measuring the size of an element: v(x) is very large when x is very small, as in close to zero. Hence, v(x - y) is very large when x is close to y.

Lemma 3.4. Let $K \subseteq F$ be an extension of real closed fields and $y \in F \setminus K$. If $v(K(y)^{\times}) \neq v(K^{\times})$, then there is $a \in K$ such that $v(y - a) \notin v(K^{\times})$. **Proof.** Let $\frac{p(y)}{q(y)} \in K(y)^{\times}$ be an element with valuation outside of $v(K^{\times})$. Since $v\left(\frac{p(y)}{q(y)}\right) = v(p(y)) - v(q(y))$, we may assume that $v(p(y)) \notin v(K^{\times})$ for some polynomial $p(Y) \in K[Y]$. Since K is real closed, we may assume that p(Y) is either (Y - a) or $(Y - a)^2 + b^2$. In the former case, we are done. In the latter, if by contradiction $v(y - a) \in v(K^{\times})$, then $v((y - a)^2) = v(b^2)$, hence $v(p(y)) > v(b^2)$, but $0 < b^2 < p(y)$, a contradiction.

Now suppose $M, N \models T_{an}$. For $y \in N \setminus M$, denote by $M\langle y \rangle$ the *definable closure* of $M \cup \{y\}$ into N. Note that $M\langle y \rangle$ is automatically an \mathcal{L}_{an} -substructure and a subfield.

Lemma 3.7. Let $M, N \models T_{an}$ with $M \subseteq N$ and $y \in N \setminus M$. Then $v(M\langle y \rangle^{\times})$ is the divisible hull of $v(M(y)^{\times})$.

Proof sketch. $v(M\langle y \rangle^{\times})$ obviously contains $v(M(y)^{\times})$, and it is divisible, because *n*-th roots of positive elements are definable.

For the other inclusion: each unary definable function f can be expanded as a *Puiseux* series (think Taylor series but with fractional exponents). Hence $f(y) \sim ay^q$ for some $a \in M$, $q \in \mathbb{Q}$, by which $v(f(y)) = v(a) + qv(y)^*$. For a better argument: if $G = v(M^{\times}) \bigoplus \mathbb{Q}v(y)$, then there is an \mathcal{L}_{an} -embedding of $M\langle y \rangle^{\times}$ into $\mathbb{R}((t^G))_{an}$ (see Lemma 3.3).

$$(M^{>0}, \cdot, <)$$

.

Μ

.

 $\mathbb{R}((t^G))_{an}$ (see Lemma 3.3).

*This is also saying that T_{an} is "power-bounded" with field of powers \mathbb{Q} . **Exercise:** Let M be an o-minimal expansion of a field. Consider the definable autoendomorphisms of the ordered group $(M^{>0}, \cdot, <)$. Show that it has a natural field structure (what are sum and product?), called **field of powers**. (Hint: prove that the endomorphisms embed into M. How? An endomorphism is a function "like" $x \mapsto x^{\alpha}$. Can you recover α ?) Verify, based on Lemma 3.7, that T_{an} has indeed field powers \mathbb{Q} and it is **power-bounded**: every definable function is eventually dominated by a power.

5. Quantifier elimination

Q.E. is based on the following observation. Call $\mathcal{L}_{an,log} \coloneqq \mathcal{L}_{an} \cup \{log\}, \ \mathcal{L}_{an,exp,log} \coloneqq \mathcal{L}_{an,exp} \cup \mathcal{L}_{an,log}$.

Theorem 4.1. Let $K \models T_{an,exp}$, F_0 be an $\mathcal{L}_{an,log}$ -substructure of K with $F_0 \models T_{an}$. If L is a $|K|^+$ -saturated model of $T_{an,exp}$ and $\sigma_0: F_0 \rightarrow L$ is an $\mathcal{L}_{an,log}$ -embedding, then σ_0 can be extended to an $\mathcal{L}_{an,log}$ -embedding of K into L.

First, why does it imply quantifier elimination?

a(avn(av)) Thu

Corollary 4.5. $T_{an,exp}$ admits quantifier elimination in $\mathcal{L}_{an,exp,log}$. **Proof.** Take models M, N with $N |M|^+$ -saturated. Take an embedding $\sigma: A \to N$ of some substructure $A \subseteq M$. By the axiomatisation of $T_{an}, A \models T_{an}$. By 4.1, we may extend σ to an embedding of N. This implies QE: the truth of existential formulas with parameters in A is determined by the isomorphism type of A! **Exercise:** fill out the (purely model theoretic) details.

To prove Theorem 4.1, one proceeds *one element at a time*. In the following, take K, F_0, L, σ_0 as in 4.1.

Lemma	Assumption	Extend σ_0 to
4.2	$v(F_0(y)^{\times}) = v(F_0^{\times})$	$F = F_0 \langle y \rangle$
	By 3.7, every $w \in F$ can be written as $w = z(1 + \varepsilon)$ with $z \in F_0$ and $\varepsilon < 1$. Thus $\log(z(1 + \varepsilon)) = \log(z) + \log(1 + \varepsilon)$ (using (E1-3,5)). Therefore, F is an $\mathcal{L}_{an,log}$ -structure. σ_0 extends to an \mathcal{L}_{an} -embedding $F \to L$ by model-completeness of T_{an} . By the above formula, the extension is also an $\mathcal{L}_{an,log}$ -embedding.	
12	$u(E(x)^{\times}) \neq u(E^{\times})$ for all $x \in K \setminus E$	$E = E \left(\operatorname{ovn}(u) \right)$
	$y \in F_0$ exp $y \notin F_0$ By 3.7, $v(F) = v(F_0^{\times}) \bigoplus \mathbb{Q}g$ where $g =$	

(u, C E (over(u))) can b

completeness of T_{an} . By the above formula, the
extension is also an $\mathcal{L}_{ m an,log}^{}$ -embedding.

	$\simeq_{\rm an,log}$ constants.		
4.5	$y \in F_0$ with $\exp(y) \notin F_0$	$r = r_0(\exp(y))$	
	By 3.7, $v(F) = v(F_0^{\times}) \bigoplus \mathbb{Q}g$ where $g = v(\exp(y))$. Thus, every $w \in F_0 \langle \exp(y) \rangle$ can be written as $w = z(1 + \varepsilon)\exp(qy)$ with $z, \varepsilon \in K$, $q \in \mathbb{Q}$, hence F is an $\mathcal{L}_{an,log}$ -structure. Now map $\exp(y)$ to $\exp(\sigma_0(y))$. One can easily verify that they realise the same <i>cut</i> over F_0 . By ominimality and model-completeness of T_{an} , we get an \mathcal{L}_{an} -embedding, which happens to be an $\mathcal{L}_{an,log}$ -embedding as well by the above formula.		
4.4	As 4.3, plus F_0 closed under exp, $y \in K \setminus F_0$.	Some $\mathcal{L}_{an,log}$ -structure $F_0(y) \subseteq F \subseteq K$.	
	We may assume $v(y) < 0$. One can build a sequence as follows: • Let $y_0 \coloneqq y, y_1 \coloneqq \log(y_0)$. • Assume we have y_n . By 3.4, let $\beta_n \in F_0$ such that $v(\log(y_n) - \beta_n) \notin v(F_0^{\times})$. Let $y_{n+1} \coloneqq \log y_n - \beta_n $, so that $\log y_n = \beta_n + \varepsilon_n y_{n+1}$. • Let $F = F_0(y_0, y_1,)$. • By (E4), we have $v(y_0) < v(y_1) < v(y_2) < < 0$. Moreover, the values are Q-linearly independent over $v(F_0^{\times})$. By 3.7, we have $v(F^{\times}) = v(F_0) \bigoplus \mathbb{Q}v(y_0) \bigoplus \mathbb{Q}v(y_1) \bigoplus$ • Pick a realisation <i>a</i> of the cut of <i>y</i> over F_0 in <i>L</i> . One verifies that each $a_1 \coloneqq \log(a)$, $a_{n+1} \coloneqq \varepsilon_n(\log(a_n) - \sigma_0(\beta_n))$ verifies the same cut as y_n over F_0 , hence by o-minimality and model-completeness of T_{an} one can extend σ_0 to an \mathcal{L}_{an} -embedding of <i>F</i> . • Every $w \in F$ can we written as $w = z(1 + \varepsilon)y_0^{q_0}y_1^{q_1} \cdots$. Hence σ_0 is also an \mathcal{L}_{an,\log^-} embedding.		
6.	Hardy fields and o-minimality		
Definitions.			

Let *R* be some expansion of the ordered field (*R*, <, 0,1, +, ·, …) with no additional relation symbols, let *T* be the complete theory of *R*.

 $f \sim g$ f x = g(x) $x \gg 1$

• An \mathcal{R} -field is a subfield of \mathcal{G} that is closed under (the germs of) all the functions in the language of \mathcal{R} (of any arity).

- Let *R* be some expansion of the ordered field (*R*, <, 0,1, +, ·, …) with no additional relation symbols, let *T* be the complete theory of *R*.
- Let \mathcal{G} be the ring of germs of functions $f, g: \mathbb{K} \to \mathbb{K}$. A germ an equivalence class for the relation $f \sim g$ when f(x) = g(x) for all $x \gg 1$.
- An \mathcal{R} -field is a subfield of \mathcal{G} that is closed under (the germs of) all the functions in the language of \mathcal{R} (of any arity).
- A Hardy field is a subfield of *G* that is closed under differentiation.
- Given $K \subseteq G$ and $g \in G$, we say that g is **comparable** to K if for all $f \in K$, either ultimately g(x) < f(x), or ultimately g(x) > f(x), or ultimately g(x) = f(x).

Fact/exercise. A subfield of G must have the following property: for every f in the subfield, either f(x) > 0, f(x) = 0, or f(x) < 0 for all $x \gg 1$. In other words, every element must be comparable to $\{0\}$.

Lemma 5.2. If *T* has quantifier elimination, then *T* is o-minimal if and only if each *term* in one variable is eventually positive, negative, or zero (i.e. comparable to $\{0\}$).

Proof. Exercise!

Lemma 5.5. If *T* has quantifier elimination and there exists an \mathcal{R} -field containing $\mathbb{R}(x)$, then *T* is o-minimal.

Proof. Since it is a field, every element is comparable to $\{0\}$. Since it is an \mathcal{R} -field containing $\mathbb{R}(x)$, it contains the germs of all terms in one variable. By 5.2, T is ominimal.

Now, let us assume that T has QE, as well as a universal axiomatisation (so that substructures are automatically models, hence elementary substructures). **Exercise:** prove that substructures are indeed elementary substructures under the above assumptions. Show an example of a theory with QE where some substructures are not always elementary (and thus, the theory does not have a universal axiomatisation).

Lemma 5.8. If *K* is an \mathcal{R} -field, then *K* can be naturally viewed as a model of *T*. **Proof.** Since *K* is closed by all functions in the language, it is naturally a structure in the language of \mathcal{R} . Suppose $T \vdash \forall \bar{x} \bigvee_{i=1}^{M} \bigwedge_{j=1}^{N} \varphi_{ij}(\bar{x})$ (with φ_{ij} atomic or negated atomic) and take $\bar{f} \in K^{|\bar{x}|}$. Consider the (definable) function $x \mapsto i(N + 1) + j$, picking the least i(N + 1) + j such that $\mathcal{R} \models \varphi_{ij}(\bar{f}(x))$. By QE, this function eventually coincides with a term. Since *K* is an \mathcal{R} -field, and the range is finite, it is eventually equal to some i(N + 1) + j, in which case $K \models \varphi_{ij}(\bar{f})$. Therefore, $K \models$ $\forall \bar{x} \bigvee_i \bigwedge_j \varphi_{ij}(\bar{x})$. Since *T* has a universal axiomatisation, $K \models T$. [Note: DMM uses a different argument.]

Lemma 5.9. Let *T* be o-minimal and let *K* be an \mathcal{R} -field. If $g \in G$ is comparable with *K*, then the " \mathcal{R} -field generated by *g* over *K*", denoted by $K\langle g \rangle$, exists. **Proof.** Let $K\langle g \rangle$ be the closure of $K \cup \{g\}$ under all terms. Since *g* is comparable $\forall \bar{x} \bigvee_i \bigwedge_j \varphi_{ij}(\bar{x})$. Since T has a universal axiomatisation, $K \models T$. [Note: DMM uses a different argument.]

Lemma 5.9. Let T be o-minimal and let K be an \mathcal{R} -field. If $g \in G$ is comparable with K, then the " \mathcal{R} -field generated by g over K", denoted by $K\langle g \rangle$, exists. **Proof.** Let $K\langle g \rangle$ be the closure of $K \cup \{g\}$ under all terms. Since g is comparable with K, it determines a cut over K. By o-minimality, the composition of all terms with g is eventually positive, negative, or zero. Then $K\langle g \rangle$ is a field, hence it is an \mathcal{R} -field.

Lemma 5.11. Let *K* be a Hardy field and $f \in K$.

1. $e^{f(x)}$ is comparable with *K*.

2. If f > 0, then $\log(f(x))$ is comparable with *K*.

Proof. 1. Suppose not. Then for some $g \in K$, $e^f - g = e^f(1 - e^{-f}g)$ keeps changing sign as $x \to \infty$. Hence the same holds for $1 - e^{-f}g$, as well as for its derivative $e^{-f}(f'g - g')$. But then f'g - g' keeps changing sign as $x \to \infty$, a contradiction since K is a Hardy field.

2. First, we verify that given $f, g \in K$, the function $(\int f) - g$ eventually stops changing sign. Suppose not: then its derivative f - g' keeps changing sign, against the assumption that K is a Hardy field. Since $\log(f) = \int f'/f$, this shows that $\log(f)$ is comparable with K.

Lemma 5.12. Let T be o-minimal and let K be an \mathcal{R} -field containing. Pick $f \in K$. Then $K\langle e^f \rangle$ is an \mathcal{R} -Hardy field, and if f > 0, likewise for $K\langle \log(f) \rangle$. **Proof.** By o-minimality, K is also closed under derivations, hence it is an \mathcal{R} -Hardy field. Thus, by 5.11, $K\langle e^f \rangle$ is an \mathcal{R} -field. Moreover, again by 5.11, e^f determines a cut over K. This is enough to show that every element of $K\langle e^f \rangle$, which can be expressed as a term in $K \cup \{f\}$, can be differentiated yielding another element of $K\langle e^f \rangle$. Therefore, $K\langle e^f \rangle$ is an \mathcal{R} -Hardy field.

Corollary 5.13. $\mathbb{R}_{an,exp}$ is o-minimal.

Proof. We know that T_{an} is o-minimal, admits QE and a universal axiomatisation in the appropriate language. Then it has an \mathcal{R} -field containing $\mathbb{R}(x)$: just take $\mathbb{R}\langle x \rangle$, per 5.9. Now apply 5.12 repeatedly until we obtain an \mathcal{R} -field closed under exp and log. Since $T_{an,exp}$ admits QE, it is o-minimal by 5.5.