O-minimality of real exponentiation

1. Preliminaries
Let L be a language, T be an L-theory.

T is model-complete if forevery M\,N = T,if M € N,then M < N.
T is model-complete if and only if every L-formula is equivalent to a universal
L-formula. In particular, if T has quantifier elimination, then it is model complete.

* The theory ACF of algebraically closed fields in the language of rings L, =
{0,1, +,-} is model-complete (it has quantifier elimination). Hence the
embeddings Q28 € C  C(t)?8 are all elementary.

* The theory RCF of real closed fields in the language L, is also model-
complete. However, it only eliminates quantifiers after moving to L, *=
Lying U {<}and adding the axiom Vx,y.x <y o Jz.x+z-z=y.
Exercise: verify that (1) RCF does not eliminate quantifiers in L4, (2) every
L ing-formula is equivalent to an existential formula, and (3) that (2) implies
model-completeness.

Addendum: in the language of ordered rings, RCF can be axiomatised by
saying that the field is ordered, plus the intermediate value property for
polynomials (if p(a)p(b) < 0, then there is ¢ between a and b such that
p(c) = 0). The i.v.p. can be replaced with "every polynomial of odd degree
has a zero, and every positive element has a square root". Exercise: how
would you axiomatise RCF is L, only?

Now assume that £ 2 {<}.

e An L-structure M is o-minimal if M E< is a total order and every definable
subset of M is a finite union of points and intervals. In other words, if every
definable subset of M is quantifier-free definable (with parameters) using <
only.
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Most of the times, o-minimality is also taken to include "< is a dense linear
order without endpoints".

O-minimality is a first order property (Pillay-Steinhorn '88): if M is o-minimal,
and N = M, then N is o-minimal (in other words, "o-minimality" coincides
with "strong o-minimality").

The type tp(a/M) of some a € N 2 M, where M is o-minimal, is completely
determined by the cut of a over M: cut,(a) :={b €M | b < a}.

The theory of dense linear orders with or without endpoints. This follows
immediately from quantifier elimination.

(w, <), again by quantifier elimination — but no proper expansion is o-
minimal (Pillay-Steinhorn '87).

The theory of real closed fields: it has QE in £ = {<, 0,1, +,-}, so every
formula is equivalent to a boolean combination of p(x) > 0 or g(x) = 0,
which clearly define finite unions of intervals and points.

What we are going to see today.

Restricted analytic functions...

Let
R{X,, ..., X,,}, forn = 0, be the ring of functions [—1,1]"—> R that are
analytic on some open U 2 [—1,1]" (where U may depend on the function).
Loy = Loring U {f}fe]R{Xl,...,Xn},neN’ where f are function symbols with the
obvious arities.
R, be the structure obtained by interpreting L, as usual and each f as
the function f.
Examples: we add symbols ¢@s, sin, €xp for the functions COSp—1,1} SINp[—1,1],
expr(—1,1], @s well as for every constant function.
T,, be the complete L,,-theory of R,,,.

Gabrielov '68: T,,, is model-complete and o-minimal (noted by van den Dries
'86).
Denef-van den Dries '88: Ty, eliminates quantifiers after adding a binary

D(x,y) = ifor |x] < |yl < 1landy # 0, D(x,y) = 0 otherwise. Moreover,

they describe a natural complete axiomatisation.



T,, cannot define:
e Global cos and sin, otherwise it would not be o-minimal (the set cos(x) = 0
is not a finite union of points and intervals).
e Global exp, because T, is also polynomially bounded: every definable unary
function is eventually dominated by a polynomial (i.e., for every definable f
there is some n such that |f(x)| < x™ for x — +00).

e Infact, every definable function R = R coincides with an L2 -term (to be
defined later) for x > 1.

2. ...and real exponentiation

*  Leyp = Loring U {€xp}, where exp is a unary function symbol.
* [Reyp be the structure obtained by interpreting exp as real exponentiation.
e Texp be the complete Ley,-theory of Reyp.
* Lanexp = Lan U Lexp-
* R, exp be the common expansion of R,, and Reyp,.
Tn exp be the complete L, exp-theory of Ry, exp-

* Wilkie '94 (but more like '91-92): Ty, is model-complete and o-minimal.

* Vanden Dries-Miller '94: T}, ey, is model-complete and o-minimal.

* Van den Dries-Macintyre-Marker '94 (after Ressayre '93): Ty exp €liminate
quantifiers after adding a unary log. Moreover, they describe a universal
axiomatisation in that language.

3. The axiomatisation
Recall that R{Xj, ..., X;,} is a ring. But you can also compose functions, provided the
image of the inner function falls within [—1,1]".

More precisely, let's keep in mind that for any f € R{Xj, ..., X;;}, we can compose f
in at least the following two ways:
(i) Letgy,..,gn € R[Xy, ..., X,;,] be such that g;([—1,1]™) € [-1,1] and
gi(0) = 0 foralli. Then f o (g1, ..., gi[-1,1]™ € R{X1, ..., Xin }-
(i) Leta €[-1,1]" and € € R™? such thata + ¢[—1,1]" € [-1,1]™. Then
f@@+X) € R{Xy, ..., X, .

(van den Dries-Macintyre-Marker '94, plus Ressayre '93). Ty oxp iS
axiomatised by the following schemes.
(a) The axioms of ordered fields.
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(b) Each positive element has an n-th root tor alln = 2 |actually redundant
here — see below].

(c) (AC1-2) The map sending f to the interpretation off is a ring homomorphism
mapping X; to the function x;, and (AC3-4) it preserves the partial
compositions as in (i)-(ii).

(d) (E1-3) The map exp is an ordered group isomorphism from the additive group
to the positive part of the multiplicative group, i.e. exp(x + y) =
exp(x) exp(y), exp is injective and surjective over the positive elements.

(e) (E4)x > n? - exp(x) > x"foralln € Nand all x.

(f) (E5)—1<x <1 - exp(x) = éxp(x).

Moreover, the above axiomatisation is universal after adding log to the language.

Addendum. Note that (E1-3) and (E5) already determine exp completely on R: for

everyr € R, thereisn € N such that% € [—1,1], hence exp(r) = €éxp (ﬁ)n
However, you need more info when you go to a non-standard model. One can
construct explicit models of (E1-3)+(E5) where, for instance, exp(x) = x has
cofinally many solutions.

1
(b) is redundant because of x» = exp (% log(x)). | report it here for

completeness: (a)-(c) is an axiomasition of T,,.

We shall now walk through the key steps in van den Dries-Macintyre-Marker '94
towards the proof of the above theorem.

We shall use, without proof, that the axiomatisation (a)-(c) of T,,, is o-minimal,
model-complete, and has QE + universal axiomatisation after adding the

definable function D to the language, where D(x,y) = f}for |x] < |y| <1and
y # 0, D(x,y) = 0 otherwise (Denef-van den Dries '88).

4. The Archimedean valuation

e Let K be afield, G be an ordered group. A valuation isa map v: K* — G such

that

a. vlxy) =v(x) +v(Q)

b. v(x+y) = min{v(x),v(y)} (ultrametric inequality).
One may also define v(0) = co = +o00 to patch up a value at 0.
Exercise: check that the balls B,(g) == {x € K | v(x — a) > g} form a basis
for a topology on K under which 4+ and - are continuous. Observe that two
balls can only be disjoint or contained in one another.
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e Suppose K isordered. Forx,y € K™, let x =< yif |[x] < n|y| forsomen € N,
and x = yifx < y < x. The quotient (K> /=, >) is an ordered group (note
the flipped order) and the map K — K /= is called Archimedean valuation.
Exercise: verify that it is a valuation.

e From now on, denote by v the Archimedean valuation.

Addendum. The field R has trivial Archimedean valuation: the quotient R* /=
consists of a single point. The ordered field R(t), where by convention 0 <t <r
for all v € R>?, has Archimedean value group Z: each =-equivalence class is
represented by t™ for some n € Z, and if you let v(t™) = n; note for instance that
v(t™"t™) = n + m. Exercise: verify explicitly that for every f € R(t) thereis a
unique ny € Z such that f = t"s; define v(f) = ny and verify that the map

v: R(t) = Zis a valuation.

A valuation is measuring the size of an element: v(x) is very large when x
is very small, as in close to zero. Hence, v(x — y) is very large when x is close to y.

Let K € F be an extension of real closed fieldsandy € F \ K. If

v(K(y)*) # v(K™), then there is a € K such that v(y — a) & v(K™).
)
Let 22

qay)
p(y)

v (@) = v(p(y)) — v(q(y)), we may assume that v(p(y)) ¢ v(K*) for some

polynomial p(Y) € K[Y]. Since K is real closed, we may assume that p(Y) is either
(Y —a) or (Y — a)? + b?. In the former case, we are done. In the latter, if by
contradiction v(y — a) € v(K*), then v((y — @)?) = v(b?), hence v(p(y)) >
v(b?), but 0 < b? < p(y), a contradiction.

€ K(y)* be an element with valuation outside of v(K*). Since

Now suppose M,N = T,,. Fory € N \ M, denote by M(y) the definable closure of
M U {y} into N. Note that M(y) is automatically an £,,-substructure and a subfield.

Let M,N & T,, withM S Nandy € N\ M. Then v(M(y)>) is the

divisible hull of v(M (y)*).
v(M(y)*) obviously contains v(M(y)>), and it is divisible, because

n-th roots of positive elements are definable.
For the other inclusion: each unary definable function f can be expanded as a
Puiseux series (think Taylor series but with fractional exponents). Hence f(y) ~
ay? for some a € M, q € Q, by which v(f(y)) = v(a) + qu(y)*. For a better
argument: if G = v(M™) @ Qu(y), then there is an L,,-embedding of M(y)* into

R((ta))an (see Lemma 3.3).



*This is also saying that 1}, is "power-bounded" with tield ot powers (. Exercise:
Let M be an o-minimal expansion of a field. Consider the definable

auteendomorphisms of the ordered group (M>9,-, <). Show that it has a natural
field structure (what are sum and product?), called field of powers. (Hint: prove
that the endomorphisms embed into M. How? An endomorphism is a function
"like" x = x®. Can you recover a?) Verify, based on Lemma 3.7, that T, has indeed
field powers Q and it is power-bounded: every definable function is eventually
dominated by a power.

5. Quantifier elimination
Q.E. is based on the following observation. Call L., = L U {log}, Lo expog =

Lan,exp U Lan,log-

Let K & Ty exp, Fo be an Ly jog-substructure of K with Fy = T, If L
is a |K|"-saturated model of Ty, exp and dg: Fy = L is an Ly, 10g-embedding, then
gy can be extended to an L, ,g-embedding of K into L.

First, why does it imply quantifier elimination?

Tan,exp @admits quantifier elimination in Ly, exp 10g-

Take models M, N with N |M|*-saturated. Take an embedding 0: 4 - N of
some substructure A € M. By the axiomatisation of T,,,, A E T,,. By 4.1, we may
extend o to an embedding of N. This implies QE: the truth of existential formulas
with parameters in A is determined by the isomorphism type of A! Exercise: fill out
the (purely model theoretic) details.

To prove Theorem 4.1, one proceeds one element at a time. In the following, take
K,Fy, L, 09 asin4.l.

Lemma Assumption Extend g to

4.2 v(Fo(y)*) = v(Fg) F = Fo(y)
By 3.7, every w € F can be writtenasw =
z(1 + £) with z € Fy and & < 1. Thus log(z(1 +
£)) = log(z) + log(1 + €) (using (E1-3,5)).
Therefore, F is an Ly, 1oo-Structure. g, extends
to an L,,-embedding F — L by model-
completeness of T,,,. By the above formula, the
extension is also an L, ,.-embedding.
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y € Fy with exp(y) € F,

By 3.7, v(F) = v(Fy') @ Qg where g =
v(exp(y)). Thus, every w € Fy(exp(y)) can be
written asw = z(1 + €)exp(qy) with z, ¢ € K,
q € Q, hence F is an L, ,g-structure. Now map
exp(y) to exp(agy(y)). One can easily verify that
they realise the same cut over Fj. By o-
minimality and model-completeness of T,,,, we
get an L,,-embedding, which happens to be an
Ly 10g-€mbedding as well by the above formula.

As 4.3, plus F, closed under exp, y € K \ Fj. Some L, |og-Structure
F,(y) € F CK.

We may assume v(y) < 0. One can build a
sequence as follows:

* Letyo = y,y1 = log(¥o).

e Assume we have y,,. By 3.4, let B,, € F,, such
that v(log(yn) — Bn) € v(FY). Let yyiq =
| log vy, — Bnl, so thatlogy, = By + €1Yn41-

o Let F = Fy(Vo, Y1, - )-
* By (E4), we have v(yo) < v(y1) <v(y,) <

.-+ < 0. Moreover, the values are Q-linearly
independent over v(Fy). By 3.7, we have
v(F*) = v(Fy) @ Qu(y,) @ Qu(y,) @ -

e Pick a realisation a of the cut of y over F in L.
One verifies that each a; == log(a), a,4+1 =
ey (log(ay,) — 0o(B;,)) verifies the same cut as
v, over Fy, hence by o-minimality and model-
completeness of T,, one can extend g, to an
L, ,-embedding of F.

e Everyw € F can we writtenasw = z(1 +
€)Y, y,* ++-. Hence ay is also an Lanlog™

embedding.

Hardy fields and o-minimality

Let R be some expansion of the ordered field (R, <, 0,1, +,-, ...) with no
additional relation symbols, let 7 be the complete theory of R.
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* Lety be tne ring ot germs OT TUNCUIONS J, g: Ik = IK. A germ an equivalence
class for the relation f ~ g when f(x) = g(x) forall x > 1.

e An R-field is a subfield of G that is closed under (the germs of) all the
functions in the language of R (of any arity).

e A Hardy field is a subfield of G that is closed under differentiation.

e GivenK € Gand g € G, we say that g is comparable to K if forall f € K,
either ultimately g(x) < f(x), or ultimately g(x) > f(x), or ultimately

g(x) = f(x).

A subfield of G must have the following property: for every f in the
subfield, either f(x) > 0, f(x) =0, or f(x) < 0 forall x > 1. In other words,
every element must be comparable to {0}.

If T has quantifier elimination, then T is o-minimal if and only if each
term in one variable is eventually positive, negative, or zero (i.e. comparable to

{0}).

Exercise!

If T has quantifier elimination and there exists an R-field containing
R(x), then T is o-minimal.
Since it is a field, every element is comparable to {0}. Since it is an R-field
containing R(x), it contains the germs of all terms in one variable. By 5.2, T is o-
minimal.

Now, let us assume that T has QE, as well as a universal axiomatisation (so that
substructures are automatically models, hence elementary substructures).
Exercise: prove that substructures are indeed elementary substructures under the
above assumptions. Show an example of a theory with QE where some
substructures are not always elementary (and thus, the theory does not have a
universal axiomatisation).

If K is an R-field, then K can be naturally viewed as a model of T.
Since K is closed by all functions in the language, it is naturally a structure in
the language of R. Suppose T + Vx V?’il /\?’=1 ®ij (%) (with (;j atomic or negated
atomic) and take f € K'*|. Consider the (definable) function x = i(N + 1) + j,
picking the least i(N + 1) + j such that R F ¢;; (f(x)). By QE, this function
eventually coincides with a term. Since K is an R-field, and the range is finite, it is

eventually equal to some i(N + 1) + J, in which case K goij(ﬂ. Therefore, K
VxV; /\j goij(f). Since T has a universal axiomatisation, K &= T. [Note: DMM uses a

different argument.]



Let T be o-minimal and let K be an R-field. If g € G is comparable with
K, then the "R-field generated by g over K", denoted by K(g), exists.

Let K(g) be the closure of K U {g} under all terms. Since g is comparable
with K, it determines a cut over K. By o-minimality, the composition of all terms
with g is eventually positive, negative, or zero. Then K{(g) is a field, hence it is an
R-field.

Let K be a Hardy field and f € K.
1. ef® js comparable with K.
2. If f > 0,thenlog(f(x)) is comparable with K.

1. Suppose not. Then for some g € K, el — g = ef(l — e_fg) keeps
changing sign as x = oo. Hence the same holds for 1 — e_fg, as well as for its
derivative e/ (f'g — g'). But then f'g — g’ keeps changing sign as x = o, a
contradiction since K is a Hardy field.

2. First, we verify that given f, g € K, the function (f f) — g eventually stops
changing sign. Suppose not: then its derivative f — g’ keeps changing sign, against
the assumption that K is a Hardy field. Since log(f) = [ f'/f, this shows that
log(f) is comparable with K.

Let T be o-minimal and let K be an R-field containing. Pick f € K.
Then K(e/) is an R-Hardy field, and if f > 0, likewise for K{(log(f)).
By o-minimality, K is also closed under derivations, hence it is an R-Hardy
field. Thus, by 5.11, K(ef) is an R-field. Moreover, again by 5.11, e/ determines a
cut over K. This is enough to show that every element of K(e/), which can be
expressed as a termin K U {f}, can be differentiated yielding another element of
K(ef). Therefore, K(e/) is an R-Hardy field.

Ran,exp is 0-minimal.
We know that T, is o-minimal, admits QE and a universal axiomatisation in
the appropriate language. Then it has an R-field containing R(x): just take R{x),
per 5.9. Now apply 5.12 repeatedly until we obtain an R-field closed under exp and
log. Since T, exp admits QE, it is o-minimal by 5.5.



