Double-Membership Graphs of Models of Anti-Foundation

Bea Adam-Day Joint with Peter Cameron and with John Howe and Rosario Mennuni

University of Leeds

- 1. Motivation
- 2. Definitions
- 3. Single Membership Graphs
- 4. Double Membership: Number of Graphs
- 5. Double Membership: Common Theory

Some questions about sets are irrelevant to mathematics. [One such question is] is there an x such that $x = \{x\}$?

K. Kunen

Definition 1

The symmetrised membership graph of a countable model of ZFC has vertices corresponding to sets and an edge between vertices x and y if $x \in y$ or $y \in x$.

Definition 1

The symmetrised membership graph of a countable model of **ZFC** has vertices corresponding to sets and an edge between vertices x and y if $x \in y$ or $y \in x$.

Figure 1: The symmetrised membership graph of the ordinals up to 2.

Definition 1

The symmetrised membership graph of a countable model of **ZFC** has vertices corresponding to sets and an edge between vertices x and y if $x \in y$ or $y \in x$.

Figure 1: The symmetrised membership graph of the ordinals up to 2.

Recall

The Random Graph is the graph obtained with probability 1 on a countable vertex set, where pairs of distinct vertices are adjoined with probability 1/2.

A property of graphs is the *Alice's Restaurant Property* (ARP) which characterises (up to isomorphism) the Random Graph:

Given any two disjoint finite sets U and V of vertices, there is a new vertex z adjacent to all vertices in U but none in V. A property of graphs is the *Alice's Restaurant Property* (ARP) which characterises (up to isomorphism) the Random Graph:

Given any two disjoint finite sets U and V of vertices, there is a new vertex z adjacent to all vertices in U but none in V.

Theorem 2 (Folklore)

The symmetrised membership graph of any countable model of **ZFC** is isomorphic to the Random Graph

A property of graphs is the *Alice's Restaurant Property* (ARP) which characterises (up to isomorphism) the Random Graph:

Given any two disjoint finite sets U and V of vertices, there is a new vertex z adjacent to all vertices in U but none in V.

Theorem 2 (Folklore)

The symmetrised membership graph of any countable model of **ZFC** is isomorphic to the Random Graph

This is true since the ARP holds in the membership graph. The proof doesn't use much set theory, but it does rely in a crucial way upon the **Axiom of Foundation**.

DEFINITIONS

An alternative to Foundation is the Anti-Foundation Axiom:

Definition 3

Let X be a set of 'indeterminates', and A a set of sets. A *flat system* of equations is a set of equations of the form $x = S_x$, where S_x is a subset of $X \cup A$ for each $x \in X$.

A solution f is a function taking elements of X to sets such that, after replacing each $x \in X$ with f(x), all its equations become true.

An alternative to Foundation is the Anti-Foundation Axiom:

Definition 3

Let X be a set of 'indeterminates', and A a set of sets. A *flat system* of equations is a set of equations of the form $x = S_x$, where S_x is a subset of $X \cup A$ for each $x \in X$.

A solution *f* is a function taking elements of *X* to sets such that, after replacing each $x \in X$ with f(x), all its equations become true.

AFA

The Anti-Foundation Axiom (AFA) is the statement that every flat system of equations has a unique solution.

ZFA is Zermelo-Fraenkel set theory with Foundation replaced by Anti-Foundation, and is equiconsistent with **ZFC**.

Consider the flat system with $X = \{x, y\}$, $A = \{\emptyset, \{\emptyset\}\}$ and the equations $x = \{x, y, \emptyset\}$ and $y = \{x, \{\emptyset\}\}$.

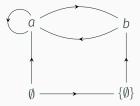


Figure 2: A picture of sets a and b satisfying the flat system.

 $S(x, y) := x \in y \lor y \in x$ $D(x, y) := x \in y \land y \in x$

 $S(x, y) := x \in y \lor y \in x$ $D(x, y) := x \in y \land y \in x$

Definition 4

• The SD-graph M_{SD} of M is the reduct of M to $L_{SD} := \{S, D\}$.

 $S(x, y) := x \in y \lor y \in x$ $D(x, y) := x \in y \land y \in x$

Definition 4

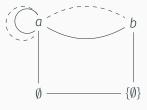
- The SD-graph M_{SD} of M is the reduct of M to $L_{SD} := \{S, D\}$.
- The *D*-graph M_D of *M* is the reduct of *M* to $L_D := \{D\}$.

 $S(x, y) := x \in y \lor y \in x$ $D(x, y) := x \in y \land y \in x$

Definition 4

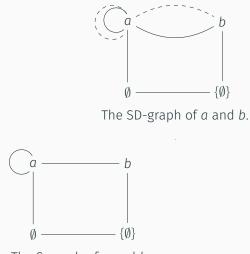
- The SD-graph M_{SD} of M is the reduct of M to $L_{SD} := \{S, D\}$.
- The *D*-graph M_D of *M* is the reduct of *M* to $L_D := \{D\}$.
- The S-graph M_S of M is the reduct of M to $L_S := \{S\}$.

EXAMPLES

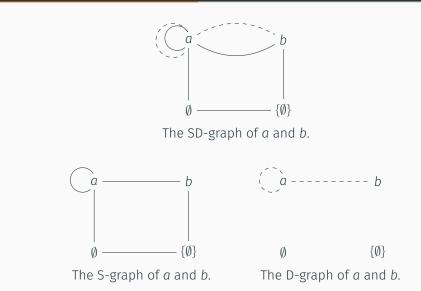


The SD-graph of *a* and *b*.

EXAMPLES



EXAMPLES



SINGLE MEMBERSHIP GRAPHS

Definition 5

The Random Loopy Graph is the graph obtained with probability 1 on a countable vertex set, where pairs of **not necessarily distinct** vertices are adjoined with probability 1/2.

Definition 5

The Random Loopy Graph is the graph obtained with probability 1 on a countable vertex set, where pairs of **not necessarily distinct** vertices are adjoined with probability 1/2.

Like the Random Graph, the Random Loopy Graph is \aleph_0 -categorical, ultrahomogeneous and supersimple.

Definition 5

The Random Loopy Graph is the graph obtained with probability 1 on a countable vertex set, where pairs of **not necessarily distinct** vertices are adjoined with probability 1/2.

Like the Random Graph, the Random Loopy Graph is \aleph_0 -categorical, ultrahomogeneous and supersimple.

The analogous Loopy Alice's Restaurant Property is:

For any two finite disjoint sets U and V there are vertices z_1 and z_2 , where z_1 has a loop and z_2 does not, such that both are adjacent to all vertices of U but none of V.

It characterises (up to isomorphism) the Random Loopy Graph.

Let *M* be a countable model of **ZFA**.

S-Graphs

Let *M* be a countable model of **ZFA**.

Theorem 6 (A-D, Cameron)

The S-Graph M_S of M is isomorphic to the Random Loopy Graph.

S-Graphs

Let *M* be a countable model of **ZFA**.

Theorem 6 (A-D, Cameron)

The S-Graph M_S of M is isomorphic to the Random Loopy Graph.

This is proved by showing that the Loopy Alice's Restaurant Property holds in the S-Graph.

S-Graphs

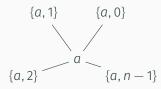
Let *M* be a countable model of **ZFA**.

Theorem 6 (A-D, Cameron)

The S-Graph M_S of M is isomorphic to the Random Loopy Graph.

This is proved by showing that the Loopy Alice's Restaurant Property holds in the S-Graph.

However, neither the SD-Graph nor the D-Graph of a countable model of **ZFA** is \aleph_0 -categorical, since for each *n* there is a distinct 1-type in the graph given by $a = \{\{a, i\} \mid i < n\}$:



Double Membership: Number of Graphs

Theorem 7 (A-D, Cameron)

Let G be a finite graph in M. Then there are infinitely many connected components in the D-graph M_D of M which are isomorphic to G.

Theorem 7 (A-D, Cameron)

Let G be a finite graph in M. Then there are infinitely many connected components in the D-graph M_D of M which are isomorphic to G.

This is proved by constructing a suitable flat system to give an isomorphic graph with D-edges in place of the edges of *G*.

Theorem 7 (A-D, Cameron)

Let G be a finite graph in M. Then there are infinitely many connected components in the D-graph M_D of M which are isomorphic to G.

This is proved by constructing a suitable flat system to give an isomorphic graph with D-edges in place of the edges of *G*.

The theorem is generalised and used to characterise the connected components of M_D as follows.

Theorem 7 (A-D, Cameron)

Let G be a finite graph in M. Then there are infinitely many connected components in the D-graph M_D of M which are isomorphic to G.

This is proved by constructing a suitable flat system to give an isomorphic graph with D-edges in place of the edges of *G*.

The theorem is generalised and used to characterise the connected components of M_D as follows.

Theorem 8 (A-D, Howe, Mennuni)

Up to isomorphism, the connected components of M_D are exactly the connected graphs in the sense of M. In particular there are infinitely many copies of each of them.

D-GRAPHS

Let *M* be a model of **ZFA**.

Theorem 9 (A-D, Howe, Mennuni)

There are 2^{\aleph_0} pairwise non-isomorphic countable models of **ZFA** whose D-graphs (resp. SD-graphs) are elementarily equivalent to M_D (resp. M_{SD}).

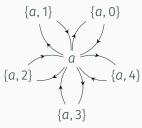
D-GRAPHS

Let *M* be a model of **ZFA**.

Theorem 9 (A-D, Howe, Mennuni)

There are 2^{\aleph_0} pairwise non-isomorphic countable models of **ZFA** whose D-graphs (resp. SD-graphs) are elementarily equivalent to M_D (resp. M_{SD}).

Proof sketch: Let $n \in \omega \setminus \{0\}$. An *n*-flower is a point with degree *n* in the D-graph M_D of *M* but no loop. E.g. $a = \{\{a, i\} \mid i < 5\}$ is a 5-flower:



Define $\beta_A(y)$ to be the set of L_D -formulae such that $b \in M_D$ is an A-bouquet iff for all $\psi(y) \in \beta_A(y)$ we have $M_D \models \psi(b)$.

Define $\beta_A(y)$ to be the set of L_D -formulae such that $b \in M_D$ is an A-bouquet iff for all $\psi(y) \in \beta_A(y)$ we have $M_D \models \psi(b)$.

By Theorem 7, M_D contains an A-bouquet for any finite subset A of $\omega \setminus \{0\}$.

Define $\beta_A(y)$ to be the set of L_D -formulae such that $b \in M_D$ is an A-bouquet iff for all $\psi(y) \in \beta_A(y)$ we have $M_D \models \psi(b)$.

By Theorem 7, M_D contains an A-bouquet for any finite subset A of $\omega \setminus \{0\}$.

In Th(M_D) the 2^{κ_0} sets of formulae β_A are each consistent – by compactness it suffices to show that if $A_0 \subseteq A$ is finite and $A_1 \subseteq \omega \setminus (\{0\} \cup A)$ is finite then there is a point $b \in M$ with a D-edge to an *n*-flower for all $n \in A_0$ and no D-edges to *n*-flowers for $n \in A_1$.

Define $\beta_A(y)$ to be the set of L_D -formulae such that $b \in M_D$ is an A-bouquet iff for all $\psi(y) \in \beta_A(y)$ we have $M_D \models \psi(b)$.

By Theorem 7, M_D contains an A-bouquet for any finite subset A of $\omega \setminus \{0\}$.

In Th(M_D) the 2^{κ_0} sets of formulae β_A are each consistent – by compactness it suffices to show that if $A_0 \subseteq A$ is finite and $A_1 \subseteq \omega \setminus (\{0\} \cup A)$ is finite then there is a point $b \in M$ with a D-edge to an *n*-flower for all $n \in A_0$ and no D-edges to *n*-flowers for $n \in A_1$.

An A₀-bouquet satisfies this requirement.

Fact

Every partial type over \emptyset of a countable theory can be realised in a countable model.

Fact

Every partial type over \emptyset of a countable theory can be realised in a countable model.

Thus Th(M) has 2^{\aleph_0} distinct countable models, as each can only realise countably many of the β_A .

Fact

Every partial type over \emptyset of a countable theory can be realised in a countable model.

Thus Th(M) has 2^{\aleph_0} distinct countable models, as each can only realise countably many of the β_A .

The reducts to L_{SD} (or L_D) of models realising different β_A are still non-isomorphic as the β_A are partial types in the language L_D .

Double Membership: Common Theory

Let K_D be the class of all D-graphs of models of **ZFA** and let $Th(K_D)$ be its common L_D -theory.

INCOMPLETENESS

Let K_D be the class of all D-graphs of models of **ZFA** and let $Th(K_D)$ be its common L_D -theory.

Theorem 10 (A-D, Howe, Mennuni)

 $Th(K_D)$ is not complete.

INCOMPLETENESS

Let K_D be the class of all D-graphs of models of **ZFA** and let $Th(K_D)$ be its common L_D -theory.

Theorem 10 (A-D, Howe, Mennuni)

 $Th(K_D)$ is not complete.

Proof sketch: Code consistency statements in the D-Graph and use the existence of a consistency statement independent of **ZFA**.

INCOMPLETENESS

Let K_D be the class of all D-graphs of models of **ZFA** and let $Th(K_D)$ be its common L_D -theory.

Theorem 10 (A-D, Howe, Mennuni)

 $Th(K_D)$ is not complete.

Proof sketch: Code consistency statements in the D-Graph and use the existence of a consistency statement independent of **ZFA**.

Further, each of the completions of $Th(K_D)$ are the theory of some D-graph M_D and, in fact:

Theorem 11 (A-D, Howe, Mennuni)

For M, $N \models ZFA$, $M_D \equiv N_D$ if and only if M and N satisfy the same consistency statements.

So the only obstruction to completeness is that models may not satisfy the same consistency statements.

Recall that there is only one countable S-graph of $M \models ZFA$, up to isomorphism.

Theorem 12 (A-D, Howe, Mennuni)

For every $M \models ZFA$ there exist

- a countable $N\equiv M_{SD}$ which is not the SD-graph of any model of $ZF\!A$ and

Recall that there is only one countable S-graph of $M \models ZFA$, up to isomorphism.

Theorem 12 (A-D, Howe, Mennuni)

For every $M \models ZFA$ there exist

- a countable $N\equiv M_{SD}$ which is not the SD-graph of any model of ZFA and
- a countable $N'\equiv M_D$ which is not the D-graph of any model of ZFA.

Recall that there is only one countable S-graph of $M \models ZFA$, up to isomorphism.

Theorem 12 (A-D, Howe, Mennuni)

For every $M \models ZFA$ there exist

- a countable $N\equiv M_{SD}$ which is not the SD-graph of any model of ZFA and
- a countable $N'\equiv M_D$ which is not the D-graph of any model of ZFA.

Recall that there is only one countable S-graph of $M \models ZFA$, up to isomorphism.

Theorem 12 (A-D, Howe, Mennuni)

For every $M \models ZFA$ there exist

- a countable $N\equiv M_{SD}$ which is not the SD-graph of any model of ZFA and
- a countable $N'\equiv M_D$ which is not the D-graph of any model of ZFA.

Proof sketch:

- A D-graph of a model of **ZFA** necessarily contains a connected component of infinite diameter.
- Adapt the proof of Hanf's Theorem to show the existence of $N \equiv M_{SD}$ where $N \upharpoonright_{L_D}$ has no connected component of infinite diameter.

Axiomatise the common theory of K_{SD} .

Axiomatise the common theory of K_{SD} .

Characterise the completions of the common theory of K_{SD} .

Axiomatise the common theory of K_{SD} .

Characterise the completions of the common theory of K_{SD} .

Thank you for your attention!

Peter Aczel. *Non-Wellfounded Sets*, volume 14 of *CSLI Lecture Notes*. CSLI Publications, 1988.

Bea Adam-Day and Peter Cameron. Undirecting membership in models of ZFA. https://arxiv.org/abs/1708.07943, preprint, 2017.

Bea Adam-Day, John Howe, and Rosario Mennuni. On double-membership graphs of models of anti-foundation. https://arxiv.org/abs/1908.02708, preprint, 2019.

Jon Barwise and Lawrence S. Moss. *Vicious Circles*, volume 60 of *CSLI Lecture Notes*. CSLI Publications, 1996.

Peter Cameron.

The Random Graph.

In Roland L. Graham, Jaroslav Nešetřil, and Steve Butler, editors, *The Mathematics of Paul Erdős*, volume 2, pages 353–378. Springer, 2013.

Marco Forti and Furio Honsell.

Set theory with free construction principles.

Annali della Scuola Normale Superiore di Pisa — Classe di Scienze, 10:493–522, 1983.