
Double-Membership Graphs of Models of
Anti-Foundation

Bea Adam-Day
Joint with Peter Cameron and with John Howe and Rosario Mennuni

University of Leeds



Table of contents

1. Motivation

2. Definitions

3. Single Membership Graphs

4. Double Membership: Number of Graphs

5. Double Membership: Common Theory

1



“ Some questions about sets are irrelevant to mathematics.
[One such question is] is there an x such that x = {x}?

K. Kunen ”
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Motivation



Motivation

Definition 1
The symmetrised membership graph of a countable model of ZFC
has vertices corresponding to sets and an edge between vertices x
and y if x ∈ y or y ∈ x.

Figure 1: The symmetrised membership graph of the ordinals up to 2.

∅ {∅}

{∅, {∅}}

Recall
The Random Graph is the graph obtained with probability 1 on a
countable vertex set, where pairs of distinct vertices are adjoined
with probability 1/2.
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Motivation

A property of graphs is the Alice’s Restaurant Property (ARP) which
characterises (up to isomorphism) the Random Graph:

Given any two disjoint finite sets U and V of vertices, there is
a new vertex z adjacent to all vertices in U but none in V.

Theorem 2 (Folklore)
The symmetrised membership graph of any countable model of ZFC
is isomorphic to the Random Graph

This is true since the ARP holds in the membership graph. The proof
doesn’t use much set theory, but it does rely in a crucial way upon
the Axiom of Foundation.
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Definitions



The Anti-Foundation Axiom

An alternative to Foundation is the Anti-Foundation Axiom:

Definition 3

Let X be a set of ‘ indeterminates’, and A a set of sets. A flat system
of equations is a set of equations of the form x = Sx, where Sx is a
subset of X ∪ A for each x ∈ X.

A solution f is a function taking elements of X to sets such that,
after replacing each x ∈ X with f(x), all its equations become true.

AFA
The Anti-Foundation Axiom (AFA) is the statement that every flat
system of equations has a unique solution.

ZFA is Zermelo-Fraenkel set theory with Foundation replaced by
Anti-Foundation, and is equiconsistent with ZFC.
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The Anti-Foundation Axiom

Consider the flat system with X = {x, y}, A = {∅, {∅}} and the equations
x = {x, y, ∅} and y = {x, {∅}}.

a b

∅ {∅}

Figure 2: A picture of sets a and b satisfying the flat system.
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Membership Graphs

Let L = {∈}, where ∈ is a binary relation symbol, and M an
L-structure. Let S and D be the definable relations

S(x, y) := x ∈ y∨ y ∈ x
D(x, y) := x ∈ y∧ y ∈ x

Definition 4

• The SD-graph MSD of M is the reduct of M to LSD := {S,D}.
• The D-graph MD of M is the reduct of M to LD := {D}.
• The S-graph MS of M is the reduct of M to LS := {S}.
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Examples

a b

∅ {∅}

The SD-graph of a and b.
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Examples
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The SD-graph of a and b.

The S-graph of a and b. The D-graph of a and b.
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Single Membership Graphs



S-Graphs

Definition 5
The Random Loopy Graph is the graph obtained with probability 1
on a countable vertex set, where pairs of not necessarily distinct
vertices are adjoined with probability 1/2.

Like the Random Graph, the Random Loopy Graph is ℵ0-categorical,
ultrahomogeneous and supersimple.

The analogous Loopy Alice’s Restaurant Property is:

For any two finite disjoint sets U and V there are vertices z1
and z2, where z1 has a loop and z2 does not, such that both
are adjacent to all vertices of U but none of V.

It characterises (up to isomorphism) the Random Loopy Graph.
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S-Graphs

Let M be a countable model of ZFA.

Theorem 6 (A-D, Cameron)
The S-Graph MS of M is isomorphic to the Random Loopy Graph.

This is proved by showing that the Loopy Alice’s Restaurant Property
holds in the S-Graph.

However, neither the SD-Graph nor the D-Graph of a countable
model of ZFA is ℵ0-categorical, since for each n there is a distinct
1-type in the graph given by a = {{a, i} | i < n}:

a

{a, 0}{a, 1}

{a, 2}

· · ·

{a,n− 1}
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Double Membership: Number of
Graphs



Connected Components

Let M be a model of ZFA.
Theorem 7 (A-D, Cameron)

Let G be a finite graph in M. Then there are infinitely many
connected components in the D-graph MD of M which are
isomorphic to G.

This is proved by constructing a suitable flat system to give an
isomorphic graph with D-edges in place of the edges of G.

The theorem is generalised and used to characterise the connected
components of MD as follows.

Theorem 8 (A-D, Howe, Mennuni)
Up to isomorphism, the connected components of MD are exactly
the connected graphs in the sense of M. In particular there are
infinitely many copies of each of them.
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D-Graphs

Let M be a model of ZFA.
Theorem 9 (A-D, Howe, Mennuni)
There are 2ℵ0 pairwise non-isomorphic countable models of ZFA
whose D-graphs (resp. SD-graphs) are elementarily equivalent to
MD (resp. MSD).

Proof sketch: Let n ∈ ω \ {0}. An n-flower is a point with degree n in
the D-graph MD of M but no loop. E.g. a = {{a, i} | i < 5} is a 5-flower:

a

{a, 0}{a, 1}

{a, 2}

{a, 3}

{a, 4}
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Proof sketch continued

For A a subset of ω \ {0}, a point b is an A-bouquet if it has no loop,
has D-edges to at least one n-flower for each n ∈ A, but not to any
n-flower for n /∈ A.

Define βA(y) to be the set of LD-formulae such that b ∈ MD is an
A-bouquet iff for all ψ(y) ∈ βA(y) we have MD |= ψ(b).

By Theorem 7, MD contains an A-bouquet for any finite subset A of
ω \ {0}.

In Th(MD) the 2ℵ0 sets of formulae βA are each consistent – by
compactness it suffices to show that if A0 ⊆ A is finite and
A1 ⊆ ω \ ({0} ∪ A) is finite then there is a point b ∈ M with a D-edge
to an n-flower for all n ∈ A0 and no D-edges to n-flowers for n ∈ A1.

An A0-bouquet satisfies this requirement.
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Proof sketch continued

For distinct A, B ⊆ ω \ {0} we may wlog assume ∃n ∈ A \ B. Then
βA(y) ⊢ “∃ an n-flower joined to y ′′, which contradicts
βB(y) ⊢ “there is no n-flower joined to y ′′. So the βA are pairwise
contradictory.

Fact
Every partial type over ∅ of a countable theory can be realised in a
countable model.

Thus Th(M) has 2ℵ0 distinct countable models, as each can only
realise countably many of the βA.

The reducts to LSD (or LD) of models realising different βA are still
non-isomorphic as the βA are partial types in the language LD.
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Double Membership: Common
Theory



Incompleteness

Let KD be the class of all D-graphs of models of ZFA and let Th(KD) be
its common LD-theory.

Theorem 10 (A-D, Howe, Mennuni)
Th(KD) is not complete.

Proof sketch: Code consistency statements in the D-Graph and use
the existence of a consistency statement independent of ZFA.

Further, each of the completions of Th(KD) are the theory of some
D-graph MD and, in fact:

Theorem 11 (A-D, Howe, Mennuni)
For M, N |= ZFA, MD ≡ ND if and only if M and N satisfy the same
consistency statements.

So the only obstruction to completeness is that models may not
satisfy the same consistency statements.
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Non-elementarity

Recall that there is only one countable S-graph of M |= ZFA, up to
isomorphism.

Theorem 12 (A-D, Howe, Mennuni)
For every M |= ZFA there exist

• a countable N ≡ MSD which is not the SD-graph of any model of
ZFA and

• a countable N ′ ≡ MD which is not the D-graph of any model of
ZFA.

Proof sketch:

• A D-graph of a model of ZFA necessarily contains a connected
component of infinite diameter.

• Adapt the proof of Hanf’s Theorem to show the existence of
N ≡ MSD where N ↾LD has no connected component of infinite
diameter.
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Open Problems

Axiomatise the common theory of KD.

Axiomatise the common theory of KSD.

Characterise the completions of the common theory of KSD.

Thank you for your attention!
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