Undirecting Membership in Models of Anti-Foundation

Bea Adam-Day

mmbiad@leeds.ac.uk

Background Information

The Axiom of Foundation

$$\forall x (x \neq \emptyset \to \exists y \in x (y \cap x = \emptyset))$$

Background Information

The Axiom of Foundation

$$\forall x (x \neq \emptyset \to \exists y \in x (y \cap x = \emptyset))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

► ∈-graphs/containment graphs of sets.

Background Information

The Axiom of Foundation

$$\forall x (x \neq \emptyset \to \exists y \in x (y \cap x = \emptyset))$$

- ► ∈-graphs/containment graphs of sets.
- The Radom Graph R is a graph with countably many vertices and an edge between any two vertices with probability ¹/₂.

Alice's Restaurant Property

The Alice's Restaurant Property:

A graph *G* has the ARP if, given finitely many distinct vertices $\{x_0, \ldots, x_{n-1}\}$ and $\{y_0, \ldots, y_{m-1}\}$ there exists a new vertex *z* which is adjacent to all the x_i and nonadjacent to all the y_j . In such cases we say that *z* is 'correctly joined'.

Alice's Restaurant Property

The Alice's Restaurant Property:

A graph *G* has the ARP if, given finitely many distinct vertices $\{x_0, \ldots, x_{n-1}\}$ and $\{y_0, \ldots, y_{m-1}\}$ there exists a new vertex *z* which is adjacent to all the x_i and nonadjacent to all the y_j . In such cases we say that *z* is 'correctly joined'.

Lemma

With probability 1, a countable random graph has the ARP.

Alice's Restaurant Property

The Alice's Restaurant Property:

A graph *G* has the ARP if, given finitely many distinct vertices $\{x_0, \ldots, x_{n-1}\}$ and $\{y_0, \ldots, y_{m-1}\}$ there exists a new vertex *z* which is adjacent to all the x_i and nonadjacent to all the y_j . In such cases we say that *z* is 'correctly joined'.

Lemma

With probability 1, a countable random graph has the ARP.

Lemma

Any two countable graphs with the ARP are isomorphic.

Theorem (Cameron)

Let M be a countable model of ZFC. The \in -graph of *M* is isomorphic to the Random Graph.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Properties of the Random Graph R

▶ R is \aleph_0 -homogeneous

i.e an isomorphism between two finite substructures extends to an automorphism of *R*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Properties of the Random Graph R

▶ R is \aleph_0 -homogeneous

i.e an isomorphism between two finite substructures extends to an automorphism of *R*.

► R is \aleph_0 -categorical

i.e any countable model that satisfies the same first-order sentences as *R* is isomorphic to *R*.

Properties of the Random Graph R

▶ R is \aleph_0 -homogeneous

i.e an isomorphism between two finite substructures extends to an automorphism of *R*.

▶ R is \aleph_0 -categorical

i.e any countable model that satisfies the same first-order sentences as *R* is isomorphic to *R*.

► R is \aleph_0 -universal

i.e any finite or countable graph may be embedded as an induced subgraph of *R*.

The Anti Foundation Axiom (AFA)

The Anti Foundation Axiom

Every flat system of equations has a unique solution.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Anti Foundation Axiom (AFA)

The Anti Foundation Axiom

Every flat system of equations has a unique solution.

Definition

Let *X* be a set of 'indeterminates', let *A* be a set of sets called 'atoms'.

A flat system of equations is a set of equations of the form $x = S_x$ where $S_x \subseteq X \cup A$ for each $x \in X$.

A solution to a flat system of equations is an assignment of sets to the indeterminates so that the equations become true.

The Loopy Alice's Restaurant Property

Definition

A graph X has the Loopy Alice's Restaurant Property if for all distinct subsets $\{x_0, \ldots, x_{n-1}\}$ and $\{y_0, \ldots, y_{m-1}\}$ there exist new vertices z_1 and z_2 which are both adjacent to all the x_i and none of the y_i , and where z_2 has a loop but z_1 does not.

 With probability 1, a countable random graph with loops has the Loopy ARP

 Any two countable graphs with the loopy ARP are isomorphic

Replacing Foundation with Anti Foundation

Theorem (A-D, Cameron)

The single-edged \in -graph Γ of a countable model of ZFA is isomorphic to the Random Loopy Graph.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Replacing Foundation with Anti Foundation

Theorem (A-D, Cameron)

The single-edged \in -graph Γ of a countable model of ZFA is isomorphic to the Random Loopy Graph.

Lemma

In a model of a subset of ZF including at least Specification and Union, there is no set S which contains all sets of cardinality p, for fixed $p \in \mathbb{N}$.

Properties or the Random Loopy Graph

• The Random Loopy Graph is \aleph_0 -homogeneous

- ▶ The Random Loopy Graph is ℵ₀-categorical
- ► The Random Loopy Graph is ℵ₀-universal

The Double-Edged Case

Theorem (A-D, Cameron)

The membership graph of a countable model of ZFA, keeping double edges, is not \aleph_0 -categorical.

Theorem (Engeler, Ryll-Nardzewski, Svenonious) For a countable first order structure M, it is \aleph_0 -categorical if and only is it has only finitely many *n*-types for every *n*.

Open Questions

- Is it true that, if two countable multigraphs are elementarily equivalent, and one is the membership graph of a model of ZFA, then so is the other?
- Is it true that there are infinitely many non-isomorphic graphs which are membership graphs of countable models of ZFA?